
© THE EDUCATION HOLDINGS (PTY) LTD 2011 Volume 1

COMPUTER ARCHITECTURE

UNIT STANDARDS

14921: Describe the types of computer systems and associated

hardware configurations

14917: Explain computer architecture concepts

14944: Explain how data is stored on computers

 Computer Architecture

© MSC EDUCATION HOLDINGS (PTY) LTD Page 2 of 167

Visit us on our website or E-mail us at:
mscho@msccollege.co.za

www.msccollege.co.za

All rights reserved. No part of this book shall be reproduced, stored

in a retrieval system, or transmitted by any means, electronically,

mechanically, by photocopying, recoding or otherwise, without the

written permission of the publisher. No patent liability is assumed

with respect to the use of the information contained in this book.

The publisher and authors assume no responsibility for losses of

any kind resulting from the direct or indirect use of the information

contained herein. For further information kindly contact:

MSC EDUCATION HOLDINGS (PTY) LTD
POSTNET 262

PRIVATE BAG X9063
EAST LONDON

5200

Copyright © MSC Education Holdings (Pty) Ltd

COMARC11V1

 Computer Architecture

© MSC EDUCATION HOLDINGS (PTY) LTD Page 3 of 167

TABLE OF CONTENTS

MODULE UNIT STANDARD ALIGNMENT 6

PURPOSE, OUTCOMES AND ASSESSMENT CRITERIA 7

ALIGNMENT MATRIX 10

KEY TO ICONS USED IN THIS MODULE 11

LEARNING UNIT 1: TYPES OF COMPUTER HARDWARE
CONFIGURATIONS AND ASSOCIATED APPLICATION
SYSTEMS 12
1. INTRODUCTION 12
1.1 COMPUTER HARDWARE CONFIGURATIONS 12
1.1.1 MICROCOMPUTERS 12
1.1.2 MINICOMPUTERS 15
1.1.3 MAINFRAMES 19
1.1.4 SUPERCOMPUTERS 21
1.1.5 CLIENT-SERVER 24
1.1.6 CPU AND RAM 30
1.1.7 EMERGING SYSTEMS 35
1.1.8 PORTABLE COMPUTING OR STANDALONE 41
1.1.9 HARDWARE ADVANCES 43
ACTIVITY 1 – REVIEWED - US 14921 SO1 43
1.2 CATEGORIES OF COMPUTER SYSTEM APPLICATIONS 43
1.2.1 APPLICATION CATEGORIES 44
1.2.2 PROCESSING METHODS 46
INFORMAL ACTIVITY – VIEWED – US 14921 SO1 49
ACTIVITY 2 – REVIEWED – US 14921 SO1,2 55

LEARNING UNIT 2: COMPUTER ARCHITECTURE 55
2. INTRODUCTION 56
2.1 COMPUTER ARCHITECTURE ELEMENTS 56
2.1.1 HARDWARE 56
2.1.2 SOFTWARE 57
2.1.3 FIRMWARE 59
2.1.4 VIRTUAL MACHINES 59
2.1.5 FUNCTIONAL LEVELS WITHIN A COMPUTER 61
ACTIVITY 3 – REVIEWED – US14917 SO2 63
2.2 THE ORGANISATION OF A COMPUTER 64
2.2.1 COMPUTER BOX 65

 Computer Architecture

© MSC EDUCATION HOLDINGS (PTY) LTD Page 4 of 167

2.2.2 MOTHERBOARD (HOUSES THE CENTRAL PROCESSING
UNIT) 65
2.2.3 CENTRAL PROCESSING UNIT (CPU) 66
2.2.4 MEMORY – RAM (STORAGE UNIT) 66
2.2.5 MEMORY (ROM) 67
2.2.6 BIOS AND BATTERY 68
2.2.7 HARD DISK 68
2.2.8 KEYBOARD 71
2.2.9 MOUSE 72
2.2.10 MONITOR / DISPLAY UNIT 72
2.2.11 POWER SUPPLY UNIT (PSU) 73
2.2.12 PC CARDS 74
2.2.13 CABLES 74
ACTIVITY 4 – REVIEWED – US14917 SO2 77
2.2.14 HOW HARDWARE COMPONENTS RELATE TO EACH
OTHER 77
ACTIVITY 5 – REVIEWED – US14917 SO2 79
2.3 DESIGN CONSTRAINTS IN INSTRUCTION SETS 79
2.3.1 DESIGN CONSTRAINTS IN DETAIL 81
2.3.2 HOW CONSTRAINTS CAN BE OVERCOME 84
ACTIVITY 6 – REVIEWED – US 14917 SO 3 85

LEARNING UNIT 3: STORAGE OF DATA 86
3. INTRODUCTION 86
3.1 COMPUTER DATA TYPES 87
3.1.1 THE BINARY NUMBERING SYSTEM 87
3.1.2 DATA TYPES 88
ACTIVITY 7 – REVIEWED – US14944 SO1 97
3.2 CHARACTER SETS AND CHARACTER ENCODING 97
3.2.1 CHARACTER ENCODING 97
3.2.2 BINARY CODED DECIMAL 99
3.2.3 EXTENDED BINARY CODED DECIMAL INTERCHANGE
CODE (EBCDIC) 100
3.2.4 AMERICAN STANDARD CODE FOR INFORMATION
INTERCHANGE (ASCII) 103
3.2.5 UNICODE 106
ACTIVITY 8 – REVIEWED – US14944 SO 1 118
3.3 DATA MANIPULATION 119
ACTIVITY 9 – REVIEWED – US149442 SO1 122
3.4 COMPUTER DATA STRUCTURES 123
3.4.1 TYPES OF DATA STRUCTURES 123
ACTIVITY 10 – REVIEWED – US14944 SO2 131
3.4.2 COMPUTER FILES AND FILE ORGANISATION 132

 Computer Architecture

© MSC EDUCATION HOLDINGS (PTY) LTD Page 5 of 167

ACTIVITY 11 – REVIEWED – US14944 SO 2 141
3.5 DATABASE SYSTEMS 141
3.5.1 HOW DATABASES ARE USED 142
3.5.2 OVERVIEW OF DATA MODELS 143
3.5.2 TYPES OF DATABASES 155
3.5.3 SQL 158
3.5.4 BENEFITS OF DATABASES 160
ACTIVITY 12 – REVIEWED - US14944 SO 2 165

REFERENCE 166

 Computer Architecture

© MSC EDUCATION HOLDINGS (PTY) LTD Page 6 of 167

MODULE UNIT STANDARD ALIGNMENT

This module is aligned to the following unit standards:

US
Number

Title NQF Credits

14921
Describe the types of computer
systems and associated hardware
configurations

4 6

14917
Explain computer architecture
concepts

4 7

14944
Explain how data is stored on
computers

4 7

 Computer Architecture

© MSC EDUCATION HOLDINGS (PTY) LTD Page 7 of 167

PURPOSE, OUTCOMES AND ASSESSMENT CRITERIA

14921 - Describe the types of computer systems and
associated hardware configurations
This unit standard is intended:

 to provide conceptual knowledge of the areas covered

 for those working in, or entering the workplace in the area of
Information Systems & Technology Management

 as additional knowledge for those wanting to understand the
areas covered

People credited with this unit standard are able to:

 Describe past, present and future computer hardware
configurations.

 Describe categories of computer system applications.
The performance of all elements is to a standard that allows for
further learning in this area.
Outcome 1

 Describe past, present and future computer hardware
configurations.

Assessment Criteria
o The description lists the characteristics of the configurations.
o The description justifies categorisation of examples.
o The description explains performance characteristics of the

configurations.
o The description explains the environmental requirements of

the configurations.
Outcome 2

 Describe categories of computer system applications.
Assessment Criteria

o The description identifies categories of computer system
applications.

o The description justifies categorisation of examples.
o The description explains the performance characteristics of

the categories.

14917 – Explain computer architecture concepts.
Purpose: This unit standard is intended:

 to provide a fundamental knowledge of the areas covered

 for those working in, or entering the workplace in the area of
Information Systems & Technology Management.

 as additional knowledge for those wanting to understand the
areas covered

 Computer Architecture

© MSC EDUCATION HOLDINGS (PTY) LTD Page 8 of 167

People credited with this unit standard are able to:

 Explain computer architecture elements

 Explain the organisation of a computer

 Describe the design constraints in the design of instruction
sets for computers

The performance of all elements is to a standard that allows for
further learning in this area
Outcome 1

 Explain computer architecture elements.
Assessment Criteria

○ The explanation identifies the functions of elements which
make up computer architecture.

○ The explanation outlines the functions of elements which
make up computer architecture.

○ The explanation distinguishes categories of each element
and outlines their features.

○ The explanation identifies examples of the application of
architecture elements.

Outcome 2

 Explain the organisation of a computer.
Assessment Criteria

○ The explanation identifies the purpose of computer
components.

○ The explanation outlines how components achieve their
outcomes in terms of their relationships, and the structure
of the computer.

Outcome 3

 Describe the design constraints in the design of
instruction sets for computers.

Assessment Criteria
○ The description identifies the constraints, and outlines the

issues involved.
○ The description outlines how the constraints have been

accommodated, by using examples.

14944 – Explain how data is stored on computers.
Purpose: This unit standard is intended:

 to provide conceptual knowledge of the areas covered

 for those working in, or entering the workplace in the
area of Information Systems and Technology
Management

 Computer Architecture

© MSC EDUCATION HOLDINGS (PTY) LTD Page 9 of 167

 as additional knowledge for those wanting to understand
the areas covered.

People credited with this unit standard are able to:

 Describe the roles of IS departments in organisations

 Describe the structures of IS departments in
organisations

The performance of all elements is to a standard that allows for
further learning in this area.
Outcome 1

 Demonstrate an understanding of computer data types.
Assessment Criteria

○ The demonstration distinguishes between data types and
includes examples (Range: Bits (0, 1) , Bytes, Numbers ,
Integers (+- values, whole items), Floating point
(temperature, voltage, etc), Boolean (0/1 on/off)).

○ The description of the use of coding systems in a
business environment distinguishes categories of coding
systems and includes examples(Range: BCD, EBCDIC
(IBM mainframes), ASCII (micro & mini computers),
UNICODE).

○ The demonstration illustrates how data manipulation
operations are performed on data types.

Outcome 2

 Describe computer data structures.
Assessment Criteria

○ The description distinguishes types of computer data
structures and identifies examples (Range: Bits, Bytes,
Characters, Fields, Records, Files, Databases).

○ The description distinguishes types of computer files and
identifies examples (Range: Master, Transaction,
Temporary, Document , Serial, Sequential, Indexed,
Direct).

○ The description distinguishes types of computer
databases and identifies examples (Range: Hierarchical,
Network, Relational, SQL (Completeness, Non-
redundancy, Structure).

 Computer Architecture

© MSC EDUCATION HOLDINGS (PTY) LTD Page 10 of 167

ALIGNMENT MATRIX

The above outcomes can be found in the following learning units:

Unit Std Number
and Name

Specific Outcomes Learning Unit
Number and Name

14921: Describe
the types of
computer systems
and associated
hardware
configurations

Specific Outcome 1
Specific Outcome 2
Specific Outcome 3
Specific Outcome 4

Learning Unit 1: Types
of computer hardware
configurations and
associated application
systems

14917: Explain
computer
architecture
concepts

Specific Outcome 1
Specific Outcome 2
Specific Outcome 3

Learning Unit 2:
Computer Architecture

14944: Explain how
data is stored on
computers

Specific Outcome 1
Specific Outcome 2

Learning Unit 3:
Storage of Data

 Computer Architecture

© MSC EDUCATION HOLDINGS (PTY) LTD Page 11 of 167

KEY TO ICONS USED IN THIS MODULE

 Group work, but
remember that
you need to
report back.

Individual activity

Questions

Role-play

Class discussion

Research

Case Study

Notes and
observations

Formative
Assessment
Activity

Summative
Assessment
Preparation

 Computer Architecture

© MSC EDUCATION HOLDINGS (PTY) LTD Page 12 of 167

LEARNING UNIT 1: TYPES OF COMPUTER

HARDWARE CONFIGURATIONS AND ASSOCIATED

APPLICATION SYSTEMS

Learning outcomes to be achieved

 Describe past, present and future computer hardware
configurations.

 Describe categories of computer systems applications.

1. INTRODUCTION

1.1 COMPUTER HARDWARE CONFIGURATIONS

The four major groups of computers are micro-computer, mini-

computer mainframe and supercomputer. This classification of

hardware configurations is largely historical based and an

outgrowth of the different requirements that each computer

generation was created for.

1.1.1 Microcomputers

The term "Microcomputer" came into

popular use after the introduction of the minicomputer which simply

means a small computer. Microcomputer is a desktop sized digital

computer that can serve one user at a time.

The microcomputer is also known as the "Personal Computer “,

stand-alone computer or desktop computer. The name “Personal

Computer” is largely related to IBM who introduced and marketed

 Computer Architecture

© MSC EDUCATION HOLDINGS (PTY) LTD Page 13 of 167

the first widely available, commercialized microcomputer called

“IBM PC” where “PC” stood for Personal Computer. As the most

dominant microcomputer in the introduction of microcomputers the

IBM PC became the standard against which all microcomputers

were compared and the branding that IBM created, the “PC”

helped provide a name for the industry as it grew.

The category is termed “micro” because the fundamental

component that allowed the category’s development was the

micro-processor, a revolutionary design in processors that brought

down the prices of computers and also pushed the envelope on

performance.

The lower and affordable costs in the development and production

of the microprocessor and various components of the

microcomputer allowed microcomputers to become a broad market

general purpose computer. The general appeal or focus of

microcomputers on the individual’s enjoyment and productivity has

been a key factor in the microcomputer’s development and

enhancement over the years. Where other computers were used

by a broad group of people within an Organisation, the

microcomputer was mostly used by the individuals for single

activities that required more processing power than other

technologies of the time had to offer.

Where larger systems were focused on the productivity of the

whole department or company, the microcomputer was often only

effective for a single person’s work.

 Computer Architecture

© MSC EDUCATION HOLDINGS (PTY) LTD Page 14 of 167

One example of how Microcomputers differ is the use of Games. In

many cases, people buy microcomputers that are capable or

running high-end games. Not only does this provide entertainment

value but it also ensures high performance capabilities. If you can

play the latest games, you can probably run the most stringent of

applications.

Microcomputers can be grouped into four smaller groups.

They are workstations (desktops), laptops, notebooks and PDAs.

Each refers to the physical usage of the machines and not

necessarily the power or the size. Workstations generally refer to

machines used for intensive calculations or designs such as

architecture and buildings.

Figure - Workstations

 Computer Architecture

© MSC EDUCATION HOLDINGS (PTY) LTD Page 15 of 167

Workstations also refer to machines used by business people for

word processing, spread sheeting etc., and are physically placed

onto a desk. The laptop and the notebook are portable machines.

Laptops generally are bigger and clumsier due to the power supply

being encased in the box holding the CPU. The notebook is

normally smaller. Notebooks and laptops can work on batteries for

hours allowing the user to work with it in aeroplanes, in the car and

places computers are not normally available. Initially designed as

stand-alone machines the PC and the operating systems popular

on the PCs do not integrate as well into networked environments

as the other computer systems. Personal Digital Assistants (PDAs)

are a very recent enhancement of electronic productivity tools

based on microprocessor technology. Personal Digital Assistants

such as Apple’s Message pad 2000 and later The Apple Message

Pad 2100, with a vastly improved handwriting recognition system,

162 MHz Strong ARM SA-110 RISC processor, Newton OS 2.1,

and a better, clearer, backlit screen, attracted critical plaudits. This

new technology has provided business people, and technocrats,

with common daily Organisation tools (such as a diary, telephone

book, and notepad) in a small packaging usually no larger than a

stenographer/short-hand notepad and many other.

1.1.2 Minicomputers

Minicomputers are a mid-sized computer that is usually placed out

of sight in an air conditioned room. We normally refer to these

computers as servers. They usually store information that’s

relevant to a host of people and they have enough processing

 Computer Architecture

© MSC EDUCATION HOLDINGS (PTY) LTD Page 16 of 167

power to cope with high amounts of processing. They allow for

simultaneous access from multiple users. They are smaller than

mainframe computers, slower and more affordable.

As a rule, these computers are untouched and mostly unseen.

There’s no need for any user interface or input and output devices.

In general, the only requirement is a network connection.

The technology advancement from vacuum tubes to transistors

leads to the ability of manufacturers and designers being able to

create computers smaller than mainframes and consequently more

affordable for a broader range of buyers. The advancement of

technology in microchips and microprocessors have allowed

minicomputers, although more expensive, to maintain a greater

processing power and then the more commonly used

microcomputer.

For

example

Large supermarkets around the world need to have

their cash register send sales information to the same

computer (so that the data is collected in one place).

This work requires more input devices (cash

registers) and output devices (Screens) than the

microcomputer was designed to have access to.

Some Organisations, like TCF and Morris Hedstrom,

operate the local supermarket using local area

networks and microcomputers, but tie the various

(100’s) supermarkets together to the central office to

a minicomputer. The minicomputer is also required to

 Computer Architecture

© MSC EDUCATION HOLDINGS (PTY) LTD Page 17 of 167

work when the entire sales people key in sales

information at the same time, this requires a powerful

machine that can work with all the input devices at the

same time.

Minicomputers are used by medium sized business and small sites

of large organisations such as Nissan South Africa. They are also

used in factories to control automated assembly lines for

manufacturing or large process control. Where numerous

equipment have to be coordinated and operated in time-critical

sequence, such as a car manufacturing plant, or chemical plant,

minicomputers are found to coordinate the many peripheral

devices, collate and assess input from many other peripheral

devices.

Figure - Minicomputers

 Computer Architecture

© MSC EDUCATION HOLDINGS (PTY) LTD Page 18 of 167

The microcomputer is inadequate in processing power and

peripheral connections to complete the work and mainframe

computers are too expensive for the job to be cost-effective.

An important measure for minicomputers and mainframes is the

reliability of the machine as it generally has to operate 24 hours

where every minute of operation is important to the company. A

minute of downtime, where the computer is not functioning

correctly, is calculated in lost money for organisations.

Microcomputers have not been manufactured nor warranted for

critical operations and many microcomputer manufacturers

explicitly state in their promotional material that the

microcomputers are not designed nor intended for critical

operations.

Terminals used by computer operators to

enter and review data do not have local hard

disks nor floppy disks. A typical minicomputer

may have 20 to 100 terminals connected to

the mini allowing as many people to review

data on screen, as well as from printouts.

Popular makers of minicomputers include DEC - Digital Equipment

Corporation who built the popular VAX minicomputer used in

universities, banks and engineering firms.

IBM also creates a very popular minicomputer range with a

branding of the AS400.

 Computer Architecture

© MSC EDUCATION HOLDINGS (PTY) LTD Page 19 of 167

Hewlett Packard has a popular minicomputer range branded the

HP9000.

1.1.3 Mainframes

Mainframes (often colloquially referred to as Big Iron are powerful

computers used mainly by large Organisations for critical

applications, typically bulk data processing such as census,

industry and consumer statistics, enterprise resource planning, and

financial transaction processing.

Figure - The Mainframe

 Computer Architecture

© MSC EDUCATION HOLDINGS (PTY) LTD Page 20 of 167

The term originally referred to the large cabinets that housed the

central processing unit and main memory of early computers. Later

the term was used to distinguish high-end commercial machines

from less powerful units.

Mainframes have even more access to storage space and to

input/output devices. To work with these extra devices mainframes

also have more powerful 'processors'. This power is useful and

required by large corporations who have large amounts of data to

process.

For

example

Large overseas banks that have millions of customer

accounts to update regular will need very powerful

machines to process this data. These large banks

would have a mainframe maintain their customer

account records (like their bank book account

balance, how much they withdrew, deposited) so that

the customer can turn-up at any of the branches (local

bank building) to withdraw/deposit money. So Thabo

who has a bank account in ABSA can take a trip from

Pretoria to Cape Town, turn up to the bank in

Khayalitsha, Cape Town to withdraw some money.

Another power of mainframes is that they are designed to connect

input/output devices that span vast distances. Like the above

example, to connect devices that can be as far away from each

other as Pretoria and Cape Town, Khayalitsha. The powerful

hardware and CPU chips that can support the above work can also

be used for making complex calculations, and designs.

 Computer Architecture

© MSC EDUCATION HOLDINGS (PTY) LTD Page 21 of 167

Mainframes are often used by corporations who design jets or

studying aerodynamics effects etc. One major inducement for the

development of these computers originally was the increasing

volumes of data collected by the US Bureau of Statistics during the

US Census. The volume of data was growing rapidly such that the

data required over 9 years collating, compiling, and publishing. As

a consequence the US Census (which is carried out every 10

years) would re-occur before the data from the previous census

was available for the public and the published information was

already significantly inaccurate on the date of release.

Due to the limits of existing technologies of the time, the

components of the “Mainframe” was much larger than they are

today and required vast spaces to store them. Hence one of the

terms synonymous with mainframe computers is “Big Iron” for the

literally BIG space the machines took up and the BIG amount of

metal it required to put a machine together.

The most popular maker of mainframes is I.B.M. International

Business Machines, a large Multi-national Corporation

headquartered in the U.S.A.

1.1.4 Supercomputers

Supercomputers are known as a class of extremely powerful digital

computers. The term is commonly applied to the fastest high-

performance systems available at a given time; current personal

computers are more powerful than the supercomputers of just a

few years ago. Supercomputers are used primarily for scientific

 Computer Architecture

© MSC EDUCATION HOLDINGS (PTY) LTD Page 22 of 167

and engineering work. Unlike

conventional computers, they usually

have more than one CPU, often

functioning in parallel

(simultaneously); even higher-

performance supercomputers are now

being developed through use of

massively parallel processing,

incorporating thousands of individual

processors. Supercomputers have huge storage capacity and very

fast input/output capability, and can operate in parallel on

corresponding elements of arrays of numbers rather than on one

pair of elements at a time Supercomputers have been developed

from the processing requirements of advanced research projects

by engineers, scientists and more recently by other research fields.

The supercomputer is a title generally given to computers with

processing power well exceeding those of the fastest mainframes

and its focus is processing data and manipulation of that data. A

significant difference between mainframes and supercomputers is

the primary focus of super computers on processing capabilities

independent of the many varied input/output devices expected on

mainframes.

The major cause for the development of super-class computers

has been the continuing need in the scientific community for faster

and faster calculations. Scientists working on atomic physics,

computer intensive calculations such as natural speech recognition

continue to require more and more computational speed to test

their theorems. An example of the use of supercomputers is the

 Computer Architecture

© MSC EDUCATION HOLDINGS (PTY) LTD Page 23 of 167

South African Weather Services for national weather analysis and

prediction. The Bureau collects weather information from around

the world and makes instant analysis of this data. This information

is critical for airlines who cannot afford to be late with their

knowledge of what the weather conditions are over their flight

paths. The incredibly large amount of data that needs to be

collected and the requirement for the answers to become available

immediately is why a supercomputer is used. Large oil companies

such as Sasol use supercomputers to analyse their geological

findings and weapons developers use supercomputers to test out

new theories and strategies.

Again, the incredible amounts of data that geologists collect, and

the complexity of matching data with what can be potentially oil or

minerals requires very powerful computing facilities.

Car manufacturers simulate in three dimensions a car design and

the number of probable accidents that can occur to manage the

design safety requirements of vehicles without having to solder any

metal or build an engine. Supercomputers have been required for

this simulation process due to the complex calculations evaluating

a simulated accident and the display in three dimensions. Most

people do not currently need the ability to chart their own world

weather map so the supercomputer is not for everyone.

Supercomputers usually require specially built facilities and a large

staff of computer technicians and computer engineers to maintain

the hardware and software.

The most commonly known Supercomputer brand is the "Cray",

from Cray Research the first company to develop a "Super"

 Computer Architecture

© MSC EDUCATION HOLDINGS (PTY) LTD Page 24 of 167

computer. The distinctive, good looks of the Cray Super Computer

housed elaborate electronics in a look good box that was poured

through with liquid coolant to keep the system cool while it works.

1.1.5 Client-server

In an environment with more than around 6-10 computers, a peer

to peer network begins to become more trouble than it is worth.

Your computers start to slow down. You can never find the file you

are looking for, and security is non-existent.

If this is the case, companies switch to a client-server network by

bringing in a dedicated server to handle the load. The server is

"dedicated" because it is optimized to quickly serve requests from

the clients (other computers on the network) and it can be well

maintained.

It's the purpose of this unit standard to explain how the

"Client/Server" architecture is really a fundamental enabling

approach that provides the most flexible framework for using new

technologies like the World Wide Web, as they come along. The

old paradigm of host centric, time shared computing has given way

to a new client/server approach, which is message based and

modular. The examples below show how most new

Technologies can be viewed as simply different implementation

strategies built on a client/server foundation.

Figure - The diagram below shows a simple client-server

network:

 Computer Architecture

© MSC EDUCATION HOLDINGS (PTY) LTD Page 25 of 167

What is a server? A server is a computer that is running software

that enables it to serve specific requests from client computers For

example, you can have a file server that acts as a central storage

place for your network, a print server that routes print requests and

status information between computers and printers connected on

the network, as well as a multitude of other servers and server

functions.

Even though most people use the term "client/server" when talking

about group computing with PC's on networks, PC network

computing evolved before the client/server model started gaining

acceptance in the late 1980's. These first PC networks were based

on the file sharing metaphor illustrated in the figure entitled FILE

SERVER. In file sharing, the server simply downloads or transfers

files from the shared location to your desktop where the logic and

data for the job run in their entirety. This approach was popularized

 Computer Architecture

© MSC EDUCATION HOLDINGS (PTY) LTD Page 26 of 167

mostly by Xbase style products (dBASE, FoxPro and Clipper). File

sharing is simple and works as long as shared usage is low,

update contention is very low, and the volume of data to be

transferred is low compared with LAN capacity.

As personal computer (PC) LAN computing moved into the 90's

two megatrends provided the impetus for client/server computing.

The first was that as first generation PC LAN applications and their

users both grew, the capacity of file sharing was strained. Multi-

user Xbase technology can provide satisfactory performance for a

few up to maybe a dozen simultaneous users of a shared file, but

it's very rare to find a successful implementation of this approach

beyond that point. The second change was the emergence and

then dominance of the GUI metaphor on the desktop. Very soon

GUI presentation formats, led by Windows and Mac, and became

mandatory for presenting information. The requirement for GUI

displays meant that traditional mini or mainframe applications with

their terminal displays soon looked hopelessly out of date.

The architecture and technology that evolved to answer this

demand was client/server, in the guise of a two-tiered approach.

By replacing the file server with a true database server, the

network could respond to client requests with just the answer to a

query against a relational DBMS (rather than the entire file). One

benefit to this approach, then, is to

significantly reduce network traffic. Also, with a real DBMS, true

multi-user updating is now easily available to users on the PC

LAN. By now, the idea of using Windows or Mac style PC's to front

end a shared database server is familiar and widely implemented.

 Computer Architecture

© MSC EDUCATION HOLDINGS (PTY) LTD Page 27 of 167

A server provides many benefits including:

 Optimisation

 Centralisation

 Security

 Redundancy and Back-up

 Server Hardware

 Server Software

Optimisation

Server hardware (the physical, touchable, material parts of a

computer or other system) is designed to quickly serve requests

from clients.

Centralisation

Files are in one location for easy administration.

Security

Multiple levels of permissions - access privileges associated with a

file or directory can prevent users from doing damage to files.

 Computer Architecture

© MSC EDUCATION HOLDINGS (PTY) LTD Page 28 of 167

Redundancy and Back-up

Data can be stored in redundant ways (for example copied onto

another hard disk on the server using special technology called

RAID), or stored on external media such as tapes, so it can be

restored quickly in case of problems. A server, like any computer,

consists of two parts, the hardware and the software.

Server Hardware

Any normal desktop computer could act as a server, but typically

you want something much more robust. Standard server hardware

includes:

Hot swappable drives to speed up adding or replacing hard disks

(used in RAID) - drives can be changed without having to shut

down the server.

The ability to support multiple processors – in actual fact this is the

brains behind a computer. Processors are responsible for

performing calculations and tasks that make computer programs

work. Multiple processors can be an advantage if you need to run

applications that are processor intensive such as a very large

database. Support for larger amounts of RAM - the more memory

you have the faster your network can run. Faster input and output

- information can travel around the network more quickly. Fast

network cards.

Server Software

Server software comes in two categories, operating systems and

applications:

 Computer Architecture

© MSC EDUCATION HOLDINGS (PTY) LTD Page 29 of 167

Network Operating Systems. A network operating system is an

operating system which includes software to communicate with

other computers via a network. There are many different operating

systems for servers just as there are many different operating

systems for desktop computers. Windows Server 2003, Linux and

Novell Netware are the three main network operating system

competitors, but they are not the only ones.

A Network Operating System has many features built-in. All

include file serving, print serving, backup and some way to secure

those resources. Some Network Operating Systems also include a

web server (to allow you to host your website or intranet yourself)

or an email server (for email distribution around your network),

while others require you to buy these items separately. Research

all the options before making a decision on the Network Operating

System for your server.

Figure out precisely what you want by browsing through websites

and sales pamphlets. Then, try to find a Computer Guru who

knows both your network and your organisation, and ask this

person what they think would work best for your organisation.

If you can, try to make sure that this person is not the person who

would be doing the work or selling you the product, otherwise they

may have some conflicts of interest. This is a big decision, and it

will dramatically affect all of your future computer relationships.

Server Applications

 Computer Architecture

© MSC EDUCATION HOLDINGS (PTY) LTD Page 30 of 167

Server applications can be designed for nearly every purpose

imaginable, from fax servers to remote access servers. Every

application will have specific server requirements, and will be

typically designed to run on either Windows Server 2003 or

Netware and increasingly Linux. Many servers run multiple

applications (e.g. email and faxing) to serve a variety of needs.

1.1.6 CPU and RAM

Since from the beginning of Electronic Numerical Integration and

Calculator (ENIAC), new ideas revolving computer technology

where implemented. Computer technology changes quickly, this

statement does not seem to adequately describe what sometimes

seems to be the breakneck pace of improvements in the heart of

any electronic computing engine, the central processing unit

(CPU). The transistor, invented at Bell Labs in 1947, is the

fundamental electronic component of the CPU chip. Higher

performance CPUs requires more logic circuitry, and this is

reflected in steadily rising transistor densities. Simply put, the

number of transistors in a CPU is a rough measure of its

computational power which is usually measured in floating point

mathematical operations per second (FLOPS). The more

transistors there are in the CPU, or silicon engine, the more work it

can do.

Trends in transistor density over time, reveal that density typically

doubles approximately every year and a half according to a well

know axiom known as Moore’s Law. This proposition, suggested

by Intel co-founder Gordon Moore (Moore 1965), was part

 Computer Architecture

© MSC EDUCATION HOLDINGS (PTY) LTD Page 31 of 167

observation and part marketing prophesy. In 1965 Moore, then

director of R&D at Fairchild Semiconductor, the first large-scale

producer of commercial integrated circuits, wrote an internal paper

in which he drew a line though five points representing the number

of components per integrated circuit for minimum cost for the

components developed between

1959 and 1964 (Source):

http://www.computerhistory.org/semiconductor/ timeline/1965-

Moore.html, accessed 12 January 2008). The prediction arising

from this observation became a self-fulfilling prophecy that

emerged as one of the driving principals of the semiconductor

industry. As is related to computer CPUs (one type of integrated

circuit), Moore’s Law states that the number of transistors packed

into a CPU doubles every 18–24 months.

In 1997, the Pentium II (2) had 7.5 million transistors, in 2000 the

Pentium 4 had 420 million, and the trend continues so that in 2007,

the Dual-Core Itanium 2 processor has 1.7 billion transistors.

In addition to transistor density, data handling capabilities (i.e.

progressing from manipulating 8, to 16, to 32, to 64 bits of

information per instruction), ever increasing clock speeds (Fig.

1.2), and the number of instructions executed per second, continue

to improve. The remarkable thing is that while the number of

transistors per CPU has increased more than 1,000 times over the

past 26 years, and another 1,000 times since 1996, performance

(measured with millions of instructions per second, MIPS) has

increased more than 10,000 times since the introduction of the

 Computer Architecture

© MSC EDUCATION HOLDINGS (PTY) LTD Page 32 of 167

8088 (Source: http://www.jcmit.com/cpu-performance.htm,

accessed 12 January 2008).

Scientific analysts, who use large databases, scientific

visualization applications, statistics, and simulation modelling,

need as many MIPS as they can get. The more powerful

computing platforms described above will enable us to perform

analyses that we could not perform earlier.

In the original edition we predicted that ‘‘Three years from now

CPU’s will be four times faster than they are today and multi-

processor designs should be commonplace.’’ This prediction has

generally proven to be true.

Figure - CPUs

CPU performance has continued to increase according to Moore’s

Law for the last 40 years, but this trend may not hold up in the near

future. To achieve higher transistor densities requires the

manufacturing technology (photolithography) to build the transistor

in smaller and smaller physical spaces. The process architecture

of CPUs in the early 1970s used a 10 micrometer (mm, 10 _6m)

 Computer Architecture

© MSC EDUCATION HOLDINGS (PTY) LTD Page 33 of 167

photolithography mask. The newest chips use a 45 nanometer

(nm, 10_9m) mask. As a consequence of these advances, the cost

per unit of performance as measured in gigaflops has dramatically

declined

It appears that manufacturing technology seems to reach its limits

in terms of how dense silicon chips can be manufactured – in other

words, how many transistors can fit onto CPU chips and how fast

their internal clocks can be run. As stated recently in the BBC

News, ‘‘the industry now believes that we are approaching the

limits of what classical technology – classical being as refined over

the last 40 years – can do.’’ (Source:

http://news.bbc.co.uk/2/hi/science/nature/4449711.stm, accessed

12 January 2008). There is a problem with making microprocessor

circuitry smaller. Power leaks, the unwanted leakage of electricity

or electrons between circuits packed ever closer together, take

place. Overheating becomes a problem as processor architecture

gets ever smaller and clock speeds increase.

Traditional processors have one processing engine on a chip. One

method used to increase performance through higher transistor

densities, without increasing clock speed, is to put more than one

CPU on a chip and to allow them to independently operate on

different tasks (called threads). These advanced chips are called

multiple-core processors.

Difference between Dual-core processor and Quad-core

processor

 Computer Architecture

© MSC EDUCATION HOLDINGS (PTY) LTD Page 34 of 167

Dual-core processor Quad-core processor

Squeezes two CPU engines

onto a single chip.

A dual-core processor

theoretically doubles your

computing power since a

dual-core processor can

handle two threads of data

simultaneously. The

Result is there is less

waiting for tasks to

complete.

Have four engines. Multiple-core

chips are all 64-bit meaning that

they can work through

64 bits of data per instruction. That

is twice rate of the current standard

32-bit processor. A quad-core chip

can handle four threads of data.

Progress marches on. Intel

announced in February 2007 that it

had a

Prototype CPU that contains 80

processor cores and is capable of 1

teraflop (1012 floating point

operations per second) of

processing capacity.

The potential uses of a desktop fingernail-sized 80-core chip with

supercomputer-like performance will open unimaginable

opportunities (Source: http://www.intel.com/

pressroom/archive/releases/20070204comp.htm, accessed 12

January 2008).

As if multiple core CPUs were not powerful enough, new products

being

developed will feature ‘‘dynamically scalable’’ architecture,

meaning that virtually every part of the processor – including cores,

cache, threads, interfaces, and power – can be dynamically

allocated based on performance, power and thermal requirements

 Computer Architecture

© MSC EDUCATION HOLDINGS (PTY) LTD Page 35 of 167

(Source:

http://www.hardwarecentral.com/hardwarecentral/reports/article.ph

p/3668756, accessed 12 January 2008). Supercomputers may

soon be the same size as a laptop if IBM brings to the market

silicon nanophotonics. In this new technology, wires on a chip are

replaced with pulses of light on tiny optical fibbers for quicker and

more power-efficient data transfers between processor cores on a

chip. This new technology is about 100 times faster, consumes

one-tenth as much power, and generates less heat (Source:

http://www.infoworld.com/article/07/12/06/IBM-researchers-build-

supercomputeron-a-chip_1.html, accessed 12 January 2008).

Multi-core processors pack a lot of power. There is just one

problem: most software programs are lagging behind hardware

improvements. To get the most out of a 64-bit processor, you need

an operating system and application programs that support it.

1.1.7 Emerging systems

The settings on a computer are called computer configuration.

Through different settings different things are achieved (i.e.,

configurations to connect to certain wireless networks; firewall

configuration to deny all unsolicited network requests; graphics

settings that enable high-performance graphics, etc.)

Currently there are 64-bit versions of Linux, Solaris, and Windows

XP, Vista and Windows 7. However, 64-bit versions of most device

drivers are not available, so for today’s uses, a 64-bit operating

system can become frustrating due to a lack of available drivers.

 Computer Architecture

© MSC EDUCATION HOLDINGS (PTY) LTD Page 36 of 167

Another current developing trend is building high performance

computing environments using computer clusters, which are

groups of loosely coupled computers, typically connected together

through fast local area networks. A cluster works together so that

multiple processors can be used as though they are a single

computer. Clusters are usually deployed to improve performance

over that provided by a single computer, while typically being much

less expensive than single computers of comparable speed or

availability. Beowulf is a design for high-performance parallel

computing clusters using inexpensive personal computer

hardware. It was originally developed by NASA’s Thomas Sterling

and Donald Becker. The name comes from the main character in

the Old English epic poem Beowulf.

A Beowulf cluster of workstations is a group of usually identical PC

computers, Configured into a multi-computer architecture, running

an Open Source Unix-like operating system, such as BSD. They

are joined into a small network and have libraries and programs

installed that allow processing to be shared among them. The

server node controls the whole cluster and serves files to the client

nodes. It is also the cluster’s console and gateway to the outside

world. Large Beowulf machines might have more than one server

node, and possibly other nodes dedicated to particular tasks, for

example consoles or monitoring stations. Nodes are configured

and controlled by the server node and do only what they are told to

do in a disk-less client configuration. There is no particular piece of

software that defines a cluster as a Beowulf.

 Computer Architecture

© MSC EDUCATION HOLDINGS (PTY) LTD Page 37 of 167

Commonly used parallel processing libraries include Message

Passing Interface; and Parallel Virtual Machine. Both of these

permit the programmer to divide a task among a group of

networked computers, and recollect the results of processing.

Software must be revised to take advantage of the cluster.

Specifically, it must be capable of performing multiple independent

parallel operations that can be distributed among the available

processors. Microsoft also distributes a Windows Compute Cluster

Server 2003 to facilitate building a high-performance computing

resource based on Microsoft’s Windows platforms.

One of the main differences between Beowulf and a cluster of

workstations is that Beowulf behaves more like a single machine

rather than many workstations.

In most cases client nodes do not have keyboards or monitors, and

are accessed only via remote login or through remote terminals.

Beowulf nodes can be thought of as a CPU + memory package

which can be plugged into the cluster, just like a CPU or memory

module can be plugged into a motherboard.

Beowulf systems are now deployed worldwide as they are simply

to use. Typical Computer configurations consist of multiple

machines built on AMD’s Opteron 64-bit and/or Athlon X2 64-bit

processors. Memory is the most readily accessible large-volume

storage available to the CPU. We expect that standard RAM

configurations will continue to increase as operating systems and

application software become more full-featured and demanding of

RAM.

 Computer Architecture

© MSC EDUCATION HOLDINGS (PTY) LTD Page 38 of 167

For example The ‘‘recommended’’ configuration for Windows

Vista Home Premium Edition and Apple’s new

Leopard operating systems is 2 GB of RAM, 1

GB to hold the operating system leaving 1 GB

for data and application code. Years (1999–

2001) 64–256 megabytes (MB) of Dynamic RAM

where available and machines with 64 MB of

RAM will be typical.

Over the years, advances in semiconductor fabrication technology

have made gigabyte memory configurations not only a reality, but

commonplace. Not all RAM performs equally. Newer types, called

double data rate RAM (DDR) decrease the time it takes for the

CPU to communicate with memory, thus speeding up computer

execution. DDR comes in several flavours. DDR has been around

since 2000 and is sometimes called DDR1. DDR2 was introduced

In 2003 It took a while forDDR2 to reach widespread use, but you

can find it in most new computers today. DDR3 began appearing in

mid-2007. RAM simply holds data for the processor.

However, there is a cache between the

processor and the RAM: the L2 cache. The

processor sends data to this cache. When the

cache overflows, data are sent to the RAM. The

RAM sends data back to the L2

Cache when the processor needs it. DDR RAM

transfers data twice per clock cycle. The clock

rate, measured in cycles per second, or hertz, is

the rate at which operations are performed.

 Computer Architecture

© MSC EDUCATION HOLDINGS (PTY) LTD Page 39 of 167

DDR clock speeds range between 200 MHz (DDR-200) and 400

MHz (DDR-400). DDR-200 transfers 1,600 megabits per second

(Mb s_1:106 bits s_1), while DDR-400 transfers 3,200 MB s_1.

DDR2 RAM is twice as fast as DDR RAM. The bus carrying data to

DDR2 memory is twice as fast. That means twice as much data

are carried to the module for each clock cycle. DDR2 RAM also

consumes less power than DDR RAM. DDR2 speeds range

between 400 MHz (DDR2-400) and 800 MHz (DDR2-800). DDR2-

400 transfers 3,200 MB s_1. DDR2-800 transfers 6,400 MB s_1.

DDR3 RAM is twice as fast as DDR2 RAM, at least in theory.

DDR3 RAM is more power efficient than DDR2RAM. DDR3

speeds range between 800MHz (DDR3-800) and 1,600 MHz

(DDR3-1600). DDR3-800 transfers 6,400 MB s_1; DDR3-1600

transfers 12,800 MB s_1.

 Computer Architecture

© MSC EDUCATION HOLDINGS (PTY) LTD Page 40 of 167

Figure - RAM

As processors increased in performance, the addressable memory

space also increased as the chips evolved from 8-bit to 64-bit.

Bytes of data readily 8 B.A. Megrey and E. Moksness accessible to

the processor are identified by a memory address, which by

convention starts at zero and ranges to the upper limit addressable

by the processor. A 32-bit processor typically uses memory

addresses that are 32 bits wide. The 32-bit wide address allows

the processor to address 232 bytes (B) of memory, which is

exactly 4,294,967,296 B, or 4 GB. Desktop machines with a

gigabyte of memory are common, and boxes configured with 4 GB

of physical memory are easily available. While 4 GB may seem like

a lot of memory, many scientific databases have indices that are

larger. A 64-bit wide address theoretically allows 18 million

terabytes of addressable memory (1.8 1019 B). Realistically 64-bit

systems will typically access approximately 64 GB of memory in

the next 5 years.

 Computer Architecture

© MSC EDUCATION HOLDINGS (PTY) LTD Page 41 of 167

1.1.8 Portable Computing or standalone

Another recent technology is the appearance of powerful portable

computer systems. The first portable computer systems (i.e.

‘‘luggables’’)

Were large, heavy, and often portability came at a cost of reduced

performance.

Current laptop, notebook, and subnotebook designs are often

comparable to desktop systems in terms of their processing power,

hard disk, and RAM storage and graphic display capabilities.

Earlier in 1996 and years after it was not unusual, when attending

a scientific or working group meeting, to see most participants

arrive with their own portable computers loaded with data and

scientific software applications. But today, it is unusual to see

scientists attending technical meetings arrive without a portable

computer like one of those below.

Figure - Portable Computers

Since 1996, the performance and cost gap between notebooks

and desktops capable of performing scientific calculations has

continued to narrow, so much so, that the unit growth rate of

notebook computers is now faster than for desktops. With the

 Computer Architecture

© MSC EDUCATION HOLDINGS (PTY) LTD Page 42 of 167

performance gap between notebooks and desktop systems

narrowing, commercial users and consumers alike are beginning to

use the notebooks more and more as a desktop replacement since

the distinction between the two as far as what work can be

accomplished is becoming more and more blurred. Moreover, the

emergence of notebook ‘‘docking stations’’ allows the opportunity

to plug notebooks into workplace or institution’s network and

internet cafe resources when one is in need to do so and then

unplug the notebook at the end of the day to take it home or on the

road, all the while maintaining one primary location for important

data, software, working documents, literature references, email

archives, and internet bookmarks. We have seen that

miniaturization of large capacity hard disk storage, memory sticks,

printers, and universal access to email made available via a cell

phone and ubiquitous Internet connectivity (see below) all

contribute to a portable computing environment, making the virtual

office a reality.

Figure - Portable Technology

 Computer Architecture

© MSC EDUCATION HOLDINGS (PTY) LTD Page 43 of 167

1.1.9 Hardware Advances

It is difficult not to appreciate at how quickly computer technology

advances. The current typical desktop or laptop computer,

compared to the original monochrome 8 KB random access

memory (RAM), 4 MHz 8088 microcomputer or the original Apple

II, has improved several orders of magnitude in many areas. The

most notable of these hardware advances are processing

capability or we can say the speed, colour graphics resolution and

display technology, hard disk storage, and the amount of RAM.

The most remarkable thing is that since 1982, the cost of a high-

end microcomputer system was fairly demanding in rand’s terms

compared to now.

ACTIVITY 1 – REVIEWED - US 14921 SO1

Divide into groups. Explain what is meant by

Computer Configuration. Complete this activity in your Portfolio of

Evidence Workbooks.

1.2 CATEGORIES OF COMPUTER SYSTEM APPLICATIONS

Here we will have a look at the different categories of computer

system applications. You have come to know computer system

applications as software programs. These are the software

packages we install on our systems in order to have certain

functionalities that we require. The four categories are; Business,

Scientific, Education and Home.

 Computer Architecture

© MSC EDUCATION HOLDINGS (PTY) LTD Page 44 of 167

Remember, computer system applications are

not the same as system software. System

software includes operating systems, which

govern computing resources. Today large

applications running on remote machines such

as Websites are considered to be system

software, because the end-user interface is

generally

You will also learn how the different types of applications perform

as well as the types of processing methods they can use.

1.2.1 Application Categories

Business applications

Business applications are a broad category that includes most

commercially available software packages available today. The

most common applications are spread sheet (MS Excel), word

processing (MS Word), database (MS Access), presentation (MS

Power Point) and project management (MS Project). Some more

examples are web browsers (Internet Explorer, Firefox), E-mail

clients (MS Outlook, Thunderbird), computer aided design (Turbo

CAD, Auto CAD), business management (SAP) and point of sales

software (Quickbooks and Pastel).

Scientific applications

Scientific applications are applications used in the fields of

medicine, scientific research, engineering and chemistry. These

applications are highly specialised. They sometimes perform

complex calculations and can therefore not be used on desktop

 Computer Architecture

© MSC EDUCATION HOLDINGS (PTY) LTD Page 45 of 167

computers. They are also difficult to operate and cannot be easily

understood by anyone.

Engineers make use of sophisticated simulators to test in a virtual

environment how their constructions will react under certain

circumstances before they start building or constructing.

Scientists make use of equation editors and flowchart software.

Examples of such applications are Microsoft Visio (Flowchart tool)

and Microsoft Equation Editor.

Home applications

Most of the time, our computers at home and at work have much

the same software setup. However, many companies do not allow

their employees certain privileges such as music, videos, pictures,

web browsing that is non-work related and gaming so we have

these things on our computers at home. For music and movies we

may have Windows Media Player, for pictures we may have

ACDsee and for gaming there may be a variety of gaming

application (games) that we may have installed at any one time.

We may also have an office package installed with Word

processing, spread sheets and so on.

Educational applications

Educational applications are software packages such as digital

encyclopaedias, language learning tools, typing tutors and many

more. Some encyclopaedic software may include Encarta,

Britannica and Wikipedia which is an internet based encyclopaedia

 Computer Architecture

© MSC EDUCATION HOLDINGS (PTY) LTD Page 46 of 167

that is free to be accessed by anyone and contributed to by

anyone.

1.2.2 Processing methods

Different processing methods allow users to obtain different levels

of functionality from a computer. For instance, the sales person at

the sales desk of a company needs to find a specific customer in

order to create an invoice for some goods the customer wants to

buy. The company have literally thousands of customers that all

have accounts there. The sales clerk cannot possibly go through

the whole list of customers in search one single person and what if

there were two people with the same name and surname? So the

company assign customer numbers to all their customers and the

sales clerk only need to enter the customer number into a search

field after which the computer does the searching and calls up the

customer’s account in seconds.

Batch processing

Let’s say you are a professional photographer and you need to

convert 800 images all from RAW format into JPG, resize them

and add a border and a watermark. This will take you forever to do.

You would have to go through every image several times. Some

photo editing applications have a batch processing function that

will allow you to do all of your changes on one image and the

program will apply them to all of the images in the batch you

specify.

 Computer Architecture

© MSC EDUCATION HOLDINGS (PTY) LTD Page 47 of 167

In the mainframe world, batch processing can help user’s process

large amounts of data automatically. Running a batch job on a

mainframe is far more effective than feeding it commands one by

one. This way, the mainframe will know exactly what to do and

complete the task all at once. Batch jobs can also be scheduled to

run at certain times of the day so doing automating your workflow

and saving you time.

Interactive processing

Interactive processing is where user input is required for an

application to perform certain tasks. Compute games are a good

example of this as you need to give the game input for anything to

happen. Another such example may be point of sales systems.

The POS system awaits input from the clerk. Let’s say scanning of

a barcode. Once the system received a barcode it immediately

checks for the product that was scanned and presents the clerk

with all the relevant information regarding the product such as

description, price, stock levels etc. Thus interactive processing

requires input in order to generate output for the user.

Real-time processing

Interactive processing is also real-time processing because your

input immediately results in an output. If you are in your car and

you step on the brake or accelerator you will immediately either

speed up or slow down. This is a real-time reaction. Similarly, if

you are chatting to your friends on MXiT, they immediately see the

text you entered. You also immediately see the text they entered.

Thus the conversation is happening in real-time.

 Computer Architecture

© MSC EDUCATION HOLDINGS (PTY) LTD Page 48 of 167

Process control

“Process control is a statistics and engineering discipline that deals

with architectures, mechanisms, and algorithms for controlling the

output of a specific process. See also control theory.” - Wikipedia

Accelerating your car is a process that has a specific and desired

outcome to reach and maintain a specific speed in accordance to

the national traffic law e.g. 60KM/h and is kept constant for as long

as needed. The speed is referred to here as the controlled variable

but it is at the same time the input variable that you read from your

speedometer in order to decide whether to accelerate or

decelerate. The desired speed is the set point. The state of the

accelerator (pressed in or released) is called the manipulated

variable since it is subject to control actions

“A commonly used control device called a programmable logic

controller, or a PLC, is used to read a set of digital and analog

inputs, apply a set of logic statements, and generate a set of

analog and digital outputs. Using the example in the previous

paragraph, the room temperature would be an input to the PLC.

The logical statements would compare the set point to the input

temperature and determine whether more or less heating was

necessary to keep the temperature constant. A PLC output would

then either open or close the hot water valve, an incremental

amount, depending on whether more or less hot water was

needed. Larger more complex systems can be controlled by a

Distributed Control System (DCS) or SCADA system.” – Wikipedia.

 Computer Architecture

© MSC EDUCATION HOLDINGS (PTY) LTD Page 49 of 167

INFORMAL ACTIVITY – VIEWED – US 14921 SO1

Discuss the question: Where did computers come from, and where

is it going?

Background information

History in the Making

Prior to electronic computers, mechanical devices

used for calculations tabulations used mechanical

gearing to tabulate occurrences of events and were

problematic due to the wear (malfunctions) that occur

with moving pieces of machinery and the problems of

creating accurate finishes on the mechanical devices

to fit the designs.

The First Electric Calculating Machines – Herman

Hollerith

To solve the problem, Herman Hollerith invented a

calculating, tabulating machine that used electricity

rather than mechanical gears. Holes representing

information to be tabulated were punched in cards with

the location of each hole representing a specific piece

of information (male, female, age, etc.) The cards were

then inserted into the machine and metal pins used to

open and close electrical circuits. Hollerith’s machine

was immensely successful and based on its success

and together with some friends they formed a

company that eventually became known as

 Computer Architecture

© MSC EDUCATION HOLDINGS (PTY) LTD Page 50 of 167

International Business Machines (IBM). The first

computer-like machine is generally thought to be the

Mark I, which was built by a team from IBM and

Harvard University. The Mark I used mechanical

telephone relay switches to store information and

accepted data on punched cards, processed it and

then output the new data. Because it could not make

decisions about the data it processed, the Mark I was

not, however, a real computer but was instead a highly

sophisticated calculator. It was, nevertheless,

impressive and has now been dismantled

(decommissioned) with parts of it on display at the

Undergraduate Science building at Harvard University.

The First Electronic Computer – Eniac.

In 1943 work began on the Electronic Numerical

Integration and Calculator, or ENIAC. It was originally

a secret military project which was to be used to

calculate the trajectory of artillery shells. In one of its

first demonstrations it was given a problem that would

have taken a team of mathematicians three days to

solve. It solved the problem in twenty seconds.

ENIAC was different from the Mark I in several

important ways. First, it occupied 63m2 and it weighed

30 tons. Second, it used 17,000 vacuum tubes instead

of relay switches. To be the first true computer. ENIAC

had two major shortcomings. First, it was difficult to

change its instructions to allow the computer to solve

different problems. It had originally been designed only

 Computer Architecture

© MSC EDUCATION HOLDINGS (PTY) LTD Page 51 of 167

to compute artillery trajectory tables, but when it

needed to work on another problem it could take up to

three days of wire pulling, re-plugging and switch

flipping to change instructions. Second, because the

tubes it contained were constantly burning out, the

ENIAC was unreliable.

The mainframe grew out of vacuum tubes and as

technology improved the mainframe became smaller

and less expensive. Correspondingly, the

Organisations who could afford the original expensive

machines had more money to spend on more features,

capabilities so although the mainframe decreased

significantly in size, it still remained a

large creature using up a lot of electricity and space.

The Stored Program Computer – John von

Neumann

In the late 1940’s, John von Neumann considered the

idea of storing computer instructions and data in

memory, which was accessed by a central processing

unit, or CPU.

The CPU would control all the functions of the

computer electronically so that it would not be

necessary to flip switches or pull wires to change the

instructions. Now it would be possible to solve many

different problems by simply typing in new instructions

at the keyboard. Together with other computer

 Computer Architecture

© MSC EDUCATION HOLDINGS (PTY) LTD Page 52 of 167

scientists, von Neumann designed and built the

EDVAC (Electronic Discrete Variable Automatic

Computer) and the EDSAC (Electronic Discrete

Storage Automatic Computer).

With the development of the concept of stored

instructions or “programs”, the modern computer age

was ready to begin. Since then the development of

new computers has progressed rapidly, but von

Newman’s concept has remained, for most part,

unchanged.

The next computer to employ von Neumann’s

concepts was the Universal Automatic Computer,

called UNIVAC, developed in 1951.

Computers at this time continued to use many vacuum

tubes which made them large and expensive. UNIVAC

weighed 35 tons. These computers were so expensive

to purchase and run that only the largest corporations

and the US government could afford them.

Their ability to perform up to 1000 calculations per

second, however, made them popular.

The Transistor – BELL Laboratories.

It was BELL Laboratories’ invention of the transistor

that made smaller and less expensive computers

possible, with increased calculating speeds of up to

10,000 calculations per second. Although the size of

the computers shrank, they were still large and

 Computer Architecture

© MSC EDUCATION HOLDINGS (PTY) LTD Page 53 of 167

expensive.

In 1963, IBM, using ideas it had learned while working

on projects for the military, introduced the first

medium-sized computer named the “model 650.” It

was still expensive, but it was capable of handling the

flood of paperwork produced by the many government

agencies and businesses. These new computers also

saw a change in the way data was stored. Punched

cards were replaced by magnetic tape and high speed

reel-to-reel tape machines. Using magnetic tape gave

computers the ability to read (access) and write (store)

data quickly and more reliably.

Another important advance occurring at the time was

the development of programming languages.

Previously, computers had to be programmed by

setting different switches to their On or Off positions.

The first programming languages were very similar,

being strings of 1’s and 0’s representing the status of

the switches (1 for On, and 0 for Off). These were

called “low-level” languages. Languages such as

FORTRAN (Formula Translator), which was the first

popular “high-level” language, allowed programmers to

use English-like instructions such as READ and

WRITE. With them, it was possible to type instructions

directly into the computer or on punched cards,

eliminating the time consuming task of re-writing.

 Computer Architecture

© MSC EDUCATION HOLDINGS (PTY) LTD Page 54 of 167

A number of high-level languages have been

developed since that time including COBOL (Common

Business Oriented Language), BASIC (Beginner’s All-

purpose Symbolic Instruction Code), Ada, C, and

Pascal. Cobol was commissioned by the US

Department of Defence in 1959 to provide a common

language for use on all computers and the

development committee was chaired by Commodore

Grace Murray Hopper of the US Navy.

The Integrated Circuits and the Microprocessor

The next major technological advancement was the

replacement of the transistor by tiny integrated circuits

or “chips.” Chips are blocks of silicon with logic circuits

etched onto their surface. They are smaller and

cheaper than transistors and can contain thousands of

circuits on a single chip. Integrated circuits also give

computers tremendous speed allowing them to

process information at a rate of 1,000,000 calculations

per second. One of the most important benefits of

using integrated circuits is to decrease the cost and

size of computers. The IBM System 360 was one of

the first computers to use integrated circuits and was

so popular with businesses that IBM had difficulty

keeping up with the demand. Computers had come

down in size and price to such a point that smaller

organisations such as universities and hospitals could

now afford them.

 Computer Architecture

© MSC EDUCATION HOLDINGS (PTY) LTD Page 55 of 167

A very important advance to occur in the early 70’s

was the invention of the microprocessor, an entire

CPU on a single chip. In 1970, Marcian Hoff, an

engineer at Intel Corporation, designed the first of

these chips. As a result, in 1975 the ALTAIR

microcomputer was born which led to the creation of

small software companies such as Microsoft and in

1977 Stephen Wozniak and Steven Jobs designed

and built the first mass market microcomputer, the

Apple. Microcomputers were inexpensive and

engineers, hobbyists were able to take their computers

home.

The computer revolution had finally come home for

many.

ACTIVITY 2 – REVIEWED – US 14921 SO1,2

Complete this activity in your Portfolio of Evidence

Workbooks.

LEARNING UNIT 2: COMPUTER

ARCHITECTURE

Learning outcomes to be achieved

 Explain computer architecture elements.

 Explain the organisation of a computer.

 Describe the design constraints in the design of instruction sets

for computers.

 Computer Architecture

© MSC EDUCATION HOLDINGS (PTY) LTD Page 56 of 167

2. INTRODUCTION

In our modern time of living, we rely on computer systems and

networks all the time, whether you like or know about it or not.

From a simple device such as a calculator, TV remote control, the

TV itself and an electronic parking meter, they are all computerised

to a certain extent. They help automate our sophisticated world to

help free up tedious man hours and save companies money. This

is both a good and a bad thing as people may lose their jobs

because an automated system is taking over. Then again, it may

also create new jobs as specialists are required to operate the new

automated machinery.

Automation is not the only application for computer systems. We

use them to store all our documents and customer data, project

data and any other forms of record you can think of. They help us

to manage huge quantities of data, sort information, solve crimes

and do our general day to day business.

Computer systems consist of Hardware, Software and Networks.

Put together they are referred to as information technology or IT.

This learning unit will focus on the explanation of those concepts

and where they fit into day-to-day life and business infrastructures.

2.1 COMPUTER ARCHITECTURE ELEMENTS

2.1.1 Hardware

Hardware is the physical components of a computer. That means

we can see, touch and hear them. Hardware provides a platform

 Computer Architecture

© MSC EDUCATION HOLDINGS (PTY) LTD Page 57 of 167

for software to work. These are components such as the mouse,

keyboard, processor (CPU), monitor and so on. They are there for

us to interact with the computer or in the case of components such

as the processor and motherboard, they are there to manipulate

data and perform specific functions to our liking. Devices that stand

separate from a computer but are connected to it by means of

cables are called peripheral devices. These are devices such as

printers, keyboards, display units, etc.

Hardware is mechanical in nature. This means that a hardware

device can only perform the task it was designed for. A display unit

cannot be used as a webcam (unless it has one built in) and

neither can a mouse be used to print documents.

2.1.2 Software

Software is intangible (untouchable) and refers to the collection of

programs such as office packages, operating systems, drawing

tools etc. that we use to perform certain tasks. We refer to

computer programs as software because even though the disks

they come on are tangible (hardware) we still cannot touch the

software code itself. We need the hardware to interpret the code

and also to manipulate it and its operation or to create digital

content by use of the programs. Even saved files like spread

sheets can be referred to as software or programs because they

contain data manipulating functions such as formulae.

Software comes in various forms. They are user installable

programs and firmware.

 Computer Architecture

© MSC EDUCATION HOLDINGS (PTY) LTD Page 58 of 167

Software – System

System software is transparent, low level software that provides

interface with the computer’s hardware. All software communicates

with hardware but not as directly as system software. You will learn

about the Kernel later.

An everyday example of system software is an operating system

(OS). A computer cannot function without an operating system

One can make use of operating systems such as Microsoft’s

Windows, One of the Linux flavours or if you are using an Apple

Macintosh, Mac OS.

Software - Application

After you have installed your operating system, your system may

not be very useful. You may have the need to do word processing,

create spread sheets, make videos or play games. Application

software is the type of software that provides you the functionality

you require.

 Computer Architecture

© MSC EDUCATION HOLDINGS (PTY) LTD Page 59 of 167

2.1.3 Firmware

Firmware controls hardware devices. Some hardware devices are

designed to perform complex tasks such as play back audio or

video. In order for these devices to perform their tasks they need

what is called firmware. The device itself may be able to output

audio and video because it has all the right circuitry to do that.

Firmware provides an interface to the hardware and allows you to

browse and select the items you would like to play and sends the

output information to the relevant hardware components.

Applications of firmware:

 Computer BIOS (basic input output system)

 Mobile device software (e.g. cell phones, MP3 players, GPS,

etc.)

 Vehicular control systems (A car’s engine control unit / ECU)

 Game consoles

 Television sets and satellite decoders

 Computer display units

2.1.4 Virtual Machines

Machine virtualisation is a revolutionary technology which saves

companies tonnes of money on hardware, in turn saving a lot of

energy and time consumed through management.

Virtual machines allow for multiple virtual computers to be

operated from one single physical host. It allows for multiple virtual

guests on a single physical host without affecting the performance

 Computer Architecture

© MSC EDUCATION HOLDINGS (PTY) LTD Page 60 of 167

of the physical host too much. A virtual machine behaves exactly

like a physical machine would. Each virtual machine is assigned an

amount of memory that it is allowed to use from the physical host

as well as a fixed amount of disk space that is pre allocated.

Memory usage is dynamic and virtual machine operational data is

cached to the hard drive of the host machine when the virtual

machine is idle for long enough. This frees up resources for other

virtual machines to use.

There are two types of virtual machine. They are a) System virtual

machines and b) Process virtual machines:

a) System virtual machines

The most common function of system virtual machines is server

virtualisation. This application saves companies lots of money by

doing away with bulky hardware. Instead of having one physical

machine for every server application, one can now have several

virtual machines on one physical machine. If you would’ve had (for

example) seven physical machines, you will now only have one

with seven virtual machines. This saves power, cooling costs and

hardware and maintenance cost. Companies can now spend more

money on one good machine rather than multiple machines that all

require upgrades too.

In short, the advantages are:

 System virtual machines requires less hardware

 They cost less to manage

 Can easily be deployed on another machine should its host

fail

 Computer Architecture

© MSC EDUCATION HOLDINGS (PTY) LTD Page 61 of 167

 Virtual machines are scalable

 They are friendlier toward the environment because,

 They consume less energy

 Virtual machines consume less space

b) Process virtual machines

These are also sometime referred to as application virtual

machines. They are used to create a platform independent

programming environment. This allows an application to start and

stop in exactly the same way irrespective of the operating system.

Java is a very good example of application virtual machines. You

will have the same code for an application and only your run-time

environment will be different. This means that you will have a

different version of the Java Runtime Environment (JRE) installed

depending on the operating system you are working on. This

means that an application you wrote in Java will be able to run on

virtually any operating system and even hardware platform (e.g.

cell phones, PDAs etc.) because it runs in an application virtual

machine.

2.1.5 Functional levels within a computer

Functional levels are also referred to as abstraction levels or

layers. See them as the organisation of different levels of operation

like that of a business or a university as in the example taken from

Wikipedia.

 Computer Architecture

© MSC EDUCATION HOLDINGS (PTY) LTD Page 62 of 167

This example may seem somewhat out of context but it’s a good

way of understanding how abstraction works. Similarly, a computer

also has abstraction levels or to get back into context, functional

levels. There are 5 main functional levels demonstrated by this

illustration.

The figure shows the abstraction levels from the least abstract

(bottom) to the most abstract (top). We say that hardware is the

least abstract (or concrete) because it is tangible. We can touch

hardware and we know for a fact that it is there. Software on the

other hand is the most abstract element of computer architecture.

This example may seem somewhat out of context but it’s a good

way of understanding how abstraction works. Similarly, a computer

also has abstraction levels or to get back into context, functional

levels. There are 5 main functional levels demonstrated by this

illustration.

The figure shows the abstraction levels from

the least abstract (bottom) to the most

abstract (top). We say that hardware is the

least abstract (or concrete) because it is

tangible. We can touch hardware and we

know for a fact that it is there. Software on

the other hand is the most abstract element

of computer architecture.

Figure: Functional
Levels

Extract from Wikipedia – Principle of abstraction

University

Faculty of Science

Department of Physics

Subject - Physics 101

Topic - Fluid dynamics

Department of Earth Sciences

Department of Biology

Faculty of Arts

Department of History

Australian History

1850-1854 Victorian Gold rush

Department of Philosophy

Figure: Example of abstraction (Functional levels)

 Computer Architecture

© MSC EDUCATION HOLDINGS (PTY) LTD Page 63 of 167

Because hardware and software are so different in their levels of

abstraction, they need a little help to communicate or to work

together and therefore we have the Kernel, the assembler and

firmware. The firmware is part of the hardware helps the hardware

communicate with the assembler and vice versa.

Assembler language is easy for hardware to understand and

therefore it is necessary for an assembler to translate user written

programs into assembly language. The type of assembly language

used depends on the type of architecture used by the system.

The Kernel is considered the common component of an operating

system because all programs need the kernel in order to work. The

kernel controls hardware resources as well as provide an inter

process communication facility or IPC. This allows programs to

communicate with both the hardware and other programs or

processes.

ACTIVITY 3 – REVIEWED – US14917 SO2

Complete this activity in your Portfolio of Evidence

Workbooks.

 Computer Architecture

© MSC EDUCATION HOLDINGS (PTY) LTD Page 64 of 167

2.2 THE ORGANISATION OF A COMPUTER

Computers don’t just work. They need to be highly organised in

order to function correctly. Computers are very complex machines

with lots of things going on and huge amounts of technology

incorporated into very small spaces. For instance a typical

processor such as an AMD Athlon dual core processor can have

as many as 233 million silicon transistors. There’s also a specific

way for information to flow through the hardware.

At input you could have a keyboard or CD drive. From there the

info can either be stored directly onto the hard drive or sent to the

Central Processing Unit that consists of the control unit and

arithmetic logic unit (ALU) for processing before it is either stored

again to the hard drive or sent for output to one of the peripheral

devices such as the display unit or printer. The diagram below

demonstrates the process.

Figure: Data flow process

 Computer Architecture

© MSC EDUCATION HOLDINGS (PTY) LTD Page 65 of 167

The most common hardware devices you will encounter are

discussed below.

2.2.1 Computer box

The computer box can be referred to as the skin of the computer. It

holds all of the computer’s essential components such as the

motherboard, processor, storage devices, power supply unit

(PSU), etc.

2.2.2 Motherboard (Houses the Central Processing Unit)

Whenever you have a number of components that have to work

together, you need something to keep them together and help

them communicate. A motherboard does just this. It is the

component that connects everything together. Processor, memory,

hard drives, display cards, sound cards, network adapter,

keyboard, mouse and all other protocol adapters plug in to the

motherboard. Nowadays, a lot of these components are actually

built into the motherboard. It also incorporates what is known as

the north and south bridges. The north bridge is also known as the

Memory Controller Hub (MCH) or Integrated Memory Controller.

The collective of the north and south bridge is referred to as the

chipset. The chipset also performs the duty of the system bus

which you will learn about later in this unit.

 Computer Architecture

© MSC EDUCATION HOLDINGS (PTY) LTD Page 66 of 167

2.2.3 Central Processing Unit (CPU)

In order to work at all, a computer needs a CPU (also referred to

as a processor). This is the component responsible for taking

decisions, manipulating data and creating output for us to use. A

processor chip contains a processor core that consists of millions

of silicon transistors. It is an extremely complex device beyond the

comprehension of a normal human being. Processors are one of

the main deciding factors for computer speed and are normally the

first component to be replaced if more speed is required. They are

normally rated in MHz (megahertz) and nowadays GHz

(gigahertz). There are also other measuring units such as MIPS

(Million instructions per second), Cycles per second and FLOPS

(Floating point Operations per Second). These are normally used

to rate the performance of mainframe processors but can be used

for other processors as well.

2.2.4 Memory – RAM (Storage Unit)

RAM or random access memory are there for the processor to

temporarily store data while it is processing instructions. RAM is

the first line of storage and is referred to as primary storage. For

instance while converting or compiling video files, the computer

stores frame by frame information in the memory while it is being

converted. Only after a frame is converted will the conversion

software instruct the processor to write the information to the hard

drive (secondary storage). Once a program or process is

terminated the memory it used is freed up for other processes to

use. This is why we are always asked whether we would like to

 Computer Architecture

© MSC EDUCATION HOLDINGS (PTY) LTD Page 67 of 167

save our documents or any changes we’ve made to them. If we

don’t save them the information will be removed from memory

never to be seen again. RAM is primary memory since all

information the computer works with is located in the RAM. Only

non-essential information or information that won’t be needed for

some time is stored on the hard drive.

There are different types of memory which is beyond the scope of

this course for discussion. I will mention the names so that you can

at least recognise it when you have to do with it.

They are:

 DRAM (Dynamic RAM)

 SDRAM (Synchronous Dynamic RAM)

 DDR (Double Data Rate Synchronous Dynamic RAM)

 RDRAM (Rambus Dynamic RAM)

2.2.5 Memory (ROM)

ROM or Read Only Memory is memory that can only be read but

not changed. The contents are fixed. The most common form of

ROM is CDs and DVDs with the latest addition being Blu-Ray.

These are disks you can write to and maybe add info to it later but

it cannot be erased with the exception of rewritable disks (CD-

RW/DVD-RW).They have a dissolvable chemical film inside that

can be smoothed out in order to erase the data so doing creating a

once again clean writable disk. This cannot be done on the fly

though. The disks need to be erased and formatted first.

 Computer Architecture

© MSC EDUCATION HOLDINGS (PTY) LTD Page 68 of 167

2.2.6 BIOS and Battery

Another occurrence of ROM is computer BIOS. The first

motherboards’ BIOS chips were ROM. It was possible to change

the settings but it was necessary to have an on-board battery in

order to power the BIOS while the computer was switched off to

prevent the settings from being lost. Then a clever guy invented

flash memory. This meant that BIOS settings could be stored

without the need for a battery. Nowadays the battery you see on a

motherboard is merely to keep the system clock running. Making

sure that the time is always correct.

2.2.7 Hard disk

Hard disks are an essential component. Before they existed people

had loads of tapes and floppy diskettes to make their computers

work. In the era of the ZX spectrums one would have a small

device with only a keyboard built into it and a tape recorder

connected via an audio cable to the ZX spectrum. Then one would

have to play back the data stored on an audio cassette. It sounded

much like a fax machine or dialup modem. This would then load

the program into the 64KB of memory the machine had and display

it on your television set.

Thanks to the hard disk, we can now easily access all of our

applications from one place in an instant. And what’s more, you

can store your documents and other information on it too.

 Computer Architecture

© MSC EDUCATION HOLDINGS (PTY) LTD Page 69 of 167

Hard disks are sensitive devices. A fall or bump can easily damage

the device. They have another limitation. Due to its mechanical

nature, the laws of physics are its greatest enemy. Its data seek

times are greatly affected because of inertia. Spindle speeds affect

the performance of a hard drive since the faster they spin, the

more durable the material it is made of need to be. Nevertheless,

the technology came a long way and today we can see speeds of

up to 300MB/s for normal desktop computer hard disks and spindle

speeds of up to 15 000RPM.

We use hard disk drives as a permanent mode of storage. We

store files that we will need in the long term. The computer itself

uses the hard drive for this very same purpose. Any information

that resides in the RAM that the computer won’t need soon is

written to the hard drive and then read only when the computer

really needs the information. Any information in the RAM is lost as

soon as power to the system is removed. We can thus say the

hard drive is a long term storage device.

There are different hard drive technologies. We won’t be going into

much detail now but you should at least know about them. The

types are classified by type of drive and then the type of interface.

Types of drive:

 Mechanical

 Solid State

Mechanical hard drives have motors that drive spindles or platters

on which data is magnetically stored, quite similar to floppy

 Computer Architecture

© MSC EDUCATION HOLDINGS (PTY) LTD Page 70 of 167

diskettes and tapes. Every hard drive’s worst nightmare is

exposure to magnets or being dropped or bumped too hard. Newer

mechanical drives can resist up to 320 G-Forces when parked

(when the needle is put away safely). Some vendors like Seagate

come up with ingenious ways of protecting hard drives but truth be

told, mechanics always fail sooner or later.

Solid state drives have no moving parts thus promises to be less

fragile than its counterpart. It is designed to mimic normal hard

drives using SRAM or DRAM rather than flash memory. These

drives are still very expensive but will definitely become more

affordable as its popularity increase over the next few years.

Types of drive interfaces:

 IDE / Parallel ATA - ATA is acronym for Advanced

Technology Attachment, Parallel refers to the way devices

are connected.

 SCSI - Pronounced as Scuzzy and used in servers for its

improved performance. SCSI is an acronym for Small

Computer Systems Interface

 S-ATA (Serial ATA) - Replaces IDE and has improved

transfer rates of up to 300MB/s. Serial refers to the way

devices are connected.

 SAS Serial Attached SCSI – SAS is the Serial counterpart

of normal SCSI. It makes use of the S-ATA principles to

improve performance.

 Fibre channel – Used in data centres for its high data

transfer rates. You won’t see these drives inside a compute

 Computer Architecture

© MSC EDUCATION HOLDINGS (PTY) LTD Page 71 of 167

or server but in storage racks and they are remotely

accessed via the FCP protocol (Fibre Channel Protocol)

2.2.8 Keyboard

Most computers have one of these. It is one of the primary

methods of inputting information into a computer. It’s also one of

the primary ways of interacting with your computer and making it

do things.

Keyboards have different key layouts depending on the region of

the world they are used in. In South Africa, we mostly use U.S.

International keyboards. These keyboards have what we call a

QWERTY (pronounced kwertie) layout. This refers to the first 5

alphabetic keys found in the top left corner.

Figure: QWERTY Keyboard

 Computer Architecture

© MSC EDUCATION HOLDINGS (PTY) LTD Page 72 of 167

2.2.9 Mouse

Another way of interacting with a computer is by means of a

mouse. There are several types of mice or pointing devices. The

first of these were the mechanical mice that had a ball inside which

role over two wheels connected to motion sensors. This mouse’s

are now nearly obsolete.

The second is the optical or laser mouse.

Optical mice have any of several types of

lights. They are either a red, blue or infra-

red laser. There’s a photo sensor that

takes hundreds of pictures every second

using the light from these lasers. The

computer then compares every picture and

moves the mouse pointer according to the displacement in the

imagery. Lastly, one of the other common devices is called a

trackball and they are normally used for graphics designs. A

trackball is almost the upside down of a mechanical mouse. The

figure shows one such mouse.

2.2.10 Monitor / Display Unit

There are two types of display units. The first is a cathode ray tube

display or CRT for short (also known as rear projection display).

Though it’s quite interesting to know, we are not going into the

detail of how these units work. For many years they have been the

main display type but now there are two new successors, LCD and

LED with LCD being the older of the two technologies. Once again

Figure: Trackball
Mouse

 Computer Architecture

© MSC EDUCATION HOLDINGS (PTY) LTD Page 73 of 167

we won’t be going into the

detail of the working of these

units. The basic benefits of

LCD and LED are clarity and

contrast ratios also being

the inspiration for HD

technology. They use far

less power than CRT and

may even exceed the expected lifetime. They are also radiation

free and LED displays are environmentally friendly because they

use no harmful chemicals to achieve their display, unlike LCD.

LCD is an acronym for Liquid Crystal Display and LED an acronym

for Light Emitting Diode.

They are extremely complicated to manufacture and therefore one

can sometimes expect to find dead pixels on a brand new screen.

2.2.11 Power Supply Unit (PSU)

An electronic device cannot operate without a proper power input

or supply of power. The power supply unit or PSU is responsible

for this. They come in several power configurations and the type

you buy may depend on the type of hardware you are using. High

end PCs may sometimes have PSUs as strong as 750Watt or

more. Not everyone needs that much power, though you cannot

determine the type of PSU required by the type of workload you

plan on placing your computer under. You’d much rather consider

the type of Processor, Motherboard and Graphics adapter because

Figure: A dead pixel

 Computer Architecture

© MSC EDUCATION HOLDINGS (PTY) LTD Page 74 of 167

those are the components that consume power. Also keep in mind

the amount of hard drives you will be using.

2.2.12 PC Cards

Also known as PCMCIA cards, PC cards were originally designed

for laptop computer storage expansion but soon after its invention

all kinds of devices such as modems and network cards was

available in this form factor. Some early digital cameras also made

use of these devices for storage. PCMCIA is an acronym for

Personal Computer Memory Card International Association and

was to provide a competing standard for the Japanese JEIDA

memory card. Later the faster express card slot was introduced

and provided better performance. PCMCIA dissolved because of

this therefore no modern computer makes use of the original

PCMCIA slots.

Today common uses for the express card are 3G cards, network

adapters (wired and wireless), USB controllers and many more.

2.2.13 Cables

There are so many different types of cables used in computers.

Luckily someone had the bright idea of giving them uniquely

shaped plugs so we cannot get all confused when setting up our

hardware.

IDE (P-ATA)

Figure: IDE Strap

 Computer Architecture

© MSC EDUCATION HOLDINGS (PTY) LTD Page 75 of 167

You need cables to connect your hard drives to the motherboard.

There are a few types of cable but your PC will only use either an

IDE or S-ATA cable. An IDE drive (really known as P-ATA or

parallel ATA) uses a flat, belt like cable with 40 connectors on each

end of the cable.

S-ATA

The faster replacement for IDE is S-ATA

and they use a much more compact

cable to carry data from the drive to the

motherboard. It has two small flat plugs

on each end.

USB 1.0, 2.0 and 3.0

USB or Universal Serial Bus is really what the name says it is,

universal. Whe connect our Keyboards, Mice, Printers, Cameras,

Scanners, Cellphones and who knows what else via this protocol.

USB have come a long way sinve its insvention.

Figure: USB 1.1, 2.0 and 3.0 cables

USB1.1 USB2.0 USB3.0

VGA Cables

Figure: S-ATA Cable

 Computer Architecture

© MSC EDUCATION HOLDINGS (PTY) LTD Page 76 of 167

Computer displays have come a long way since the monochrome

display and so has the cables they use. The most common now is

the 15-pin S-VGA cable though there are two new standards, DVI

and HDMI.

S-VGA (Super Video Graphics Array) is more of an analogue

interface used for CRT displays and for some LCDs though

hampering the quality of the display. Therefore the DVI interface

was designed to provide a better visual experience. For high

definition technology there’s the HDMI interface which does pretty

much what DVI does except for incorporating audio into the

interface providing an all-round mind numbing audio visual

experience.

Figure: Display cables

S-VGA DVI HDMI

PS2

Prior to the invention of USB we used to have

PS2 ports into which keyboards and mice

plugged in to. They are normally coloured green

for mice and purple for keyboards.

Figure: PS2
Cable

 Computer Architecture

© MSC EDUCATION HOLDINGS (PTY) LTD Page 77 of 167

COM / Serial

Before PS2 we connected our mice via

COM or Communications ports better

known as serial ports. You will still find

these ports on most computers today

since they are still used for dialup

modems, shell access to servers or

hardware routers and switches.

LPT

LPT, an abbreviation for Line Print Terminal

and also known as a Parallel port, are

commonly used for printing.

ACTIVITY 4 – REVIEWED – US14917 SO2

Complete this activity in your Portfolio of Evidence

Workbooks.

2.2.14 How hardware components relate to each other

The figure below shows the basic interconnectivity of devices in a

computer by means of busses.

Figure: Serial Cable

Figure: LPT
Cable

 Computer Architecture

© MSC EDUCATION HOLDINGS (PTY) LTD Page 78 of 167

Figure: Bus Diagram

In the early days, processors were responsible for controlling

devices and reading and writing to and from them. This took up

precious CPU time. Another problem was that all devices were

required to talk at the same speed which in turn affected to growth

of CPU speed. This was a huge limitation. Another limitation was

that devices were not able to communicate with each other

directly. All communications had to be handled by the processor

itself. The introduction of busses meant that there was now a “post

office” to which devices could send their data. Devices could then

send data to other devices on either the same or other busses

without the necessity of the processor.

Busses lead to the increase of performance for both processors

and memory because they were now isolated from other devices.

There was only one similarity between non-bus and bus systems.

All of the devices on a bus had to talk at the same speed. This was

a problem for high performance devices and lead to motherboard

manufacturers incorporating AGP (accelerated graphics port) ports

 Computer Architecture

© MSC EDUCATION HOLDINGS (PTY) LTD Page 79 of 167

on their boards. This was the case for many other bus types such

as P-ATA (Parallel Advanced Technology Attachment) which was

replaced by S-ATA (Serial Advanced Technology Attachment).

AGP was replaced again in 2004 by PCI-Express.

Devices on the same bus would communicate with each other via

that bus. Though when they need to communicate with other

devices on other busses they would need to make use of the

bridge which would send the communications to the relevant

busses e.g. from the USB to the CPU on the System bus.

ACTIVITY 5 – REVIEWED – US14917 SO2

Complete this activity in your Portfolio of

Evidence Workbooks.

2.3 DESIGN CONSTRAINTS IN INSTRUCTION SETS

A computer needs a heart just like a human does. The only

difference is that these hearts need to do more than just shove

blood around the system. In order for a processor to do its job

right, software engineers need to design an instruction set

architecture and they do so by use of Register Transfer Language

or RTL for short. RTL is a programming language used to tell the

processor how every operation will work for every instruction in the

instruction set architecture. In short, it describes what the

processor is capable of doing. By establishing the capability of the

processor one also establishes its limitations or the constraints.

 Computer Architecture

© MSC EDUCATION HOLDINGS (PTY) LTD Page 80 of 167

A constraint is something that keeps something else from

happening or puts a limit on how that something happens.

A design constraint of an instruction set determines how

instructions in the particular set are constrained.

The six typed of design constraints are:

 Instruction length

 Memory transfer

 Instruction format

 Operand specification

 Instruction fetch

 Word length

 Computer Architecture

© MSC EDUCATION HOLDINGS (PTY) LTD Page 81 of 167

2.3.1 Design constraints in detail

Instruction length

Depending on design, processors can only handle certain lengths

of instructions. This is obviously determined by the system

architects. If an instruction is longer or more complex than what the

processor supports, it won’t be able to execute it. Instruction length

is determined by the amount of operands in the instruction. The

longer the instruction the more complex it is. For instance, an

instruction with 3 operands will be more complex than an

instruction with 1 operand. An operand is the part of an instruction

that the processor will be working on or that will be changed.

Memory transfer

As we discussed earlier, memory is the workbench of the

processor. The processor needs to be able to move data in and

out of memory in the correct places. This ability is a very essential

part of a processor’s instruction set architecture.

Instruction format

Computer instructions in the smallest level are

made up of binary digits or bits. A bit is a “1” or a

“0” value that is represented by a specific point on

a storage medium (such as a hard drive or DVD)

by the presence (“1”) or absence (“0”) of an

electronic charge. A bit also represents the presence (“1”) or

absence (“0”) of electronic charges in all digital devices. This

includes bit is not limited to the processor, mice, keyboards,

printers, etc.

 Computer Architecture

© MSC EDUCATION HOLDINGS (PTY) LTD Page 82 of 167

Bits are put together in specific ways to make up instructions.

Different types of instructions are obviously formatted differently

and if an instruction is formatted incorrectly the processor won’t be

able to understand the instruction and therefore it won’t be able to

perform the instruction.

Operand specification

An operand is that part of an instruction that tells the processor

what it needs to do in order to correctly complete the instruction.

The more operands in an instruction the longer and more complex

the instruction become. Instruction set architecture or ISA for short

makes use of memory addresses and registers. A memory

address is the address where the processor can put information

about a process it is working on. A register is one single piece or

area of memory that the processor uses to store an instruction

while it is being processed. It is important that you know the

difference between the memory address and a register because

they are not located in the same place. Processors have what we

call cache memory and the cache memory contains the registers

we are talking about. The operands in the instructions tell the

computer what areas of memory it should use while the instruction

is processed. Operands also indicate to the computer where

processed information should be stored in order for it to be easily

accessed later.

An instruction should therefore indicate to the processor what

operands are to be used in order for the instruction to be

processed. We call this operand specification.

 Computer Architecture

© MSC EDUCATION HOLDINGS (PTY) LTD Page 83 of 167

Instruction fetch

For a computer to process an instruction it needs to transfer the

instruction from wherever it is stored into the correct areas of

memory inside the memory’s work space. Along with the

instruction there’s other information about how the instruction is to

be executed and this too needs to be transferred. This is referred

to as the fetch cycle so when a computer placed the instruction

and its data into the correct places in memory a fetch cycle is

completed. Instruction fetch can be defined as a machine cycle

used by the processor to obtain instructions from memory.

Word length

Processors are normally rated in bits. For instance modern day

computers all have 64bit processors. This refers to the word

length. Word length is the amount of bits that are strung together

when sent to the processor for processing. For instance a 32bit

processor cannot handle 64bit strings. The more bits are grouped

together the more complicated the instruction becomes. Though, a

64bit processor is much faster than a 32bit processor. 64bit

processors can process more instructions because it is capable of

processing larger quantities of data.

 Computer Architecture

© MSC EDUCATION HOLDINGS (PTY) LTD Page 84 of 167

2.3.2 How constraints can be overcome

Make use of a RISC processor

Using a processor built based on RISC principles

means that the processor spends less time trying to

perform one complex operation but instead performs

a sequence of simple operations that do the same

thing, only much more efficiently. RISC is an acronym

for Reduced Instruction Set Computing. The

principles of RISC determine that a processor be built not with a

reduced amount of instructions but with instruction sets that is

reduced in their complexity. An example of a processor based on

RISC principles would be Intel’s x86 and x64 ranges of processors.

These processors are in our everyday desktop and laptop

computers. Using RISC will ensure that work is done more

efficiently and promptly.

Increase processor speed

In order to compensate for the performance deficiencies a certain

instruction set may have, engineers may increase the speed of the

processor in order to help speed up the processing of more

complex instructions and so doing overcoming constraints.

Here’s a practical real world example which isn’t computer related.

If a car accelerates from 0 – 100KM/h in 6 seconds and another

car does so in 5.5 seconds, the manufacturer of the first car may

try to increase the top speed of the car in order to compensate for

the 0.5 seconds lost at acceleration.

 Computer Architecture

© MSC EDUCATION HOLDINGS (PTY) LTD Page 85 of 167

ACTIVITY 6 – REVIEWED – US 14917 SO 3

Complete this activity in your Portfolio of Evidence Workbooks.

 Computer Architecture

© MSC EDUCATION HOLDINGS (PTY) LTD Page 86 of 167

LEARNING UNIT 3: STORAGE OF DATA

Learning outcomes to be achieved

 Demonstrate an understanding of computer data types.

 Describe computer data structures.

3. INTRODUCTION

Data types are important to all computer programming languages.

It would be difficult to maintain information within a computer

program. Since the major duty of computer programming is to take

information, process it, and deliver the information in a different

form to the user, data types play a significant part in determining

how this goal is achieved.

Different programming languages have different constraints upon

the data types that they provide.

It should also be noted that some languages are strongly typed,

meaning that the data type of a piece of information has to be

declared before that variable (or slot) can be used. Weakly typed

languages, on the other hand (like many BASIC variants) do not

require that a variable's data type is declared before use, but it

should always maintain the same data type throughout its lifespan.

Languages usually allow the possibility to cast (convert) between

compatible types.

 Computer Architecture

© MSC EDUCATION HOLDINGS (PTY) LTD Page 87 of 167

3.1 COMPUTER DATA TYPES

3.1.1 The binary numbering system

The binary numbering system consists of two digits called binary

digits (bits): zero and one. A switch in the off state represents zero,

and a switch in the on state represents one. Today’s computers

are built from transistors (Electronic Switches). This means that a

transistor can only represent one of the two digital switches.

However, two digits don’t provide sufficient data to do anything but

store the number zero or one in memory. We store more data in

memory by logically grouping together switches. For example, two

switches enable us to store two binary digits, which give us four

combinations, as shown below and these combinations can store

numbers 0 through 3. Digits are zero-based, meaning that the first

digit in the binary numbering system is zero, not 1. Memory is

organized into groups of eight bits called a byte, enabling 256

combinations of zeros and ones that can store numbers from 0

through 255.

Table: Combination of Switches

Switch
1

Switch
2

Decimal
Value

0 0 0

0 1 1

1 0 2

1 1 3

Binary, Octal and Hexadecimal numbers

 Computers can input and output decimal numbers but they

convert them to internal binary representation.

 Computer Architecture

© MSC EDUCATION HOLDINGS (PTY) LTD Page 88 of 167

 Binary is good for computers, but is hard for people to read

o Use numbers easily computed from binary

 Binary numbers use only two different digits: {0,1}

o Example: 120010 = 00000100101100002

 Octal numbers use 8 digits: {0 - 7}

o Example: 120010 = 042608

 Hexadecimal numbers use 16 digits: {0-9, A-F}

o Example: 120010 = 04B016 = 0x04B0

o One does not distinguish between upper and lower

case

3.1.2 Data types

Abstract data types are divided into two categories namely

primitive data types and user-defined data types.

3.1.2.1 Primitive data types

Bit

A bit or binary digit is the basic unit of information in computing

and telecommunications; it is the amount of information that can be

stored by a digital device or other physical system that usually

exist in only two distinct states.

In computer science, a bit is also defined as a variable or

computed quantity that can have only two possible values which

are often interpreted as binary digits and are usually denoted by

the Arabic numerical digits 0 and 1. The term "bit" is a contraction

 Computer Architecture

© MSC EDUCATION HOLDINGS (PTY) LTD Page 89 of 167

of binary digit. The two values may also be understood as logical

values (true/false, yes/no), algebraic signs (+/−), activation states

(on/off), or any other two-valued attributes. In some programming

languages, numeral 0 is equivalent (or convertible) to logical false

and 1 equals true. The correspondence between these values and

the physical states of the underlying storage or device is a matter

of convention, and different assignments may be used even within

the same device or program.

The symbol for bit, as a unit of information, is either "bit"

(recommended by the ISO/IEC standard 80000-13 (2008)) or

lowercase "b" (recommended by the IEEE 1541 Standard (2002)).

Byte

The byte is a unit of digital information in computing and

telecommunications. It is an ordered collection of bits, in which

each bit denotes the binary value of 1 or 0. Historically, a byte was

the number of bits (typically 5, 6, 7, 8, 9, or 16) used to encode a

single character of text in a computer and it is for this reason the

basic addressable element in many computer architectures. The

size of a byte is typically hardware dependent, but the modern de

facto standard is 8 bits, as this is a convenient power of 2. Most of

the numeric values used by many applications are representable in

8 bits and processor designers optimize for this common usage.

Signal processing applications tend to operate on larger values

and some digital signal processors have 16 or 40 bits as the

smallest unit of addressable storage (on such processors a byte

may be defined to contain this number of bits).

 Computer Architecture

© MSC EDUCATION HOLDINGS (PTY) LTD Page 90 of 167

Word

In computing, word is a term for the natural unit of data used by a

particular computer design. A word is simply a fixed sized group of

bits that are handled together by the system. The number of bits in

a word (the word size or word length) is an important

characteristic of computer architecture.

The size of a word is reflected in many aspects of a computer's

structure and operation; the majority of the registers in the

computer are usually word sized and the amount of data

transferred between the processing part computer and the memory

system, in a single operation, is most often a word. The largest

possible address size, used to designate a location in memory, is

typically a hardware word (in other words, the full sized natural

word of the processor, as opposed to any other definition used on

the platform).

Modern computers usually have a word size of 16, 32 or 64 bits

but many other sizes have been used, including 8, 9, 12, 18, 24,

36, 39, 40, 48 and 60 bits. The slab is an example of a system with

an earlier word size. Several of the earliest computers used the

decimal base rather than binary, typically having a word size of 10

or 12 decimal digits and some early computers had no fixed word

length at all.

Integer (int), Short integer, Long integer

Integers are whole numbers, and integer variables are used when

you know there will not be anything after the decimal point, e.g. if

you're writing a lottery ball generator, all the balls have whole

 Computer Architecture

© MSC EDUCATION HOLDINGS (PTY) LTD Page 91 of 167

numbers on them. The difference between short integers, integers

and long integers is the number of bytes used to store them. This

will vary according to the operating system and hardware you're

using, but these days you can assume that an integer will be at

least 16 bits, and a long integer is probably at least 32. In a 32-bit

environment, it is more efficient to use long integers (i.e. a whole

word), and so many compilers will automatically use long integers

unless you specify a short one.

Important Integer information:

 sbyte (-128 to 127): signed 8-bit

 byte (0 to 255): unsigned 8-bit

 short (-32,768 to 32,767): signed 16-bit

 ushort (0 to 65,535): unsigned 16-bit

 int (-2,147,483,648 to 2,147,483,647): signed 32-bit

 uint (0 to 4,294,967,295): unsigned 32-bit

 long (-9,223,372,036,854,775,808 to

9,223,372,036,854,775,807): signed 64-bit

 ulong (0 to 18,446,744,073,709,551,615): unsigned 64-bit

Float, Single, Double

Floating point numbers contain fractional parts - i.e. they are not

whole numbers. The single and double quantifiers are similar to

the short and long quantifiers used with integers. They indicate

how many bits are being used to store a variable. Floating point

arithmetic can lead to problems with rounding and accuracy, so

when dealing with a limited number of decimal places, it is better to

use integers and multiply all your values by a power of 10. For

 Computer Architecture

© MSC EDUCATION HOLDINGS (PTY) LTD Page 92 of 167

example, if you're dealing with money, it's better to work in cents

and use integers than to work in rand and use floating point

variables.

Important Floating point information:

 Floating-point types are:

 float (±1.5 × 10−45 to ±3.4 × 1038): 32-bits, precision of 7

digits

 double (±5.0 × 10−324 to ±1.7 × 10308): 64-bits, precision

of 15-16 digits

 The default value of floating-point types:

 Is 0.0F for the float type

 Is 0.0D for the double type

Fixed-Point number

In computing, a fixed-point number representation is a real data

type for a number that has a fixed number of digits after (and

sometimes also before) the radix point (e.g., after the decimal point

'.' in English decimal notation). Fixed-point number representation

can be compared to the more complicated (and more

computationally demanding) floating point number representation.

Fixed-point numbers are useful for representing fractional values,

usually in base 2 or base 10, when the executing processor has no

floating point unit (FPU) or if fixed-point provides improved

performance or accuracy for the application at hand. Most low-cost

embedded microprocessors and microcontrollers do not have an

FPU.

 Computer Architecture

© MSC EDUCATION HOLDINGS (PTY) LTD Page 93 of 167

Characters

In computer terminology, a character is a unit of information that

roughly corresponds to a grapheme, grapheme-like unit, or

symbol, such as in an alphabet or syllable in the written form of a

natural language.

Examples of characters include letters, numerical digits, and

common punctuation marks (such as '.' or '-'). The concept also

includes control characters, which do not correspond to symbols in

a particular natural language, but rather to other bits of information

used to process text in one or more languages. Examples of

control characters include carriage return or tab, as well as

instructions to printers or other devices that display or otherwise

process text.

Characters are typically combined into strings.

Strings

 Fixed-length string

Strings are variables that contain text, and they come in two sorts.

With a fixed-length string, you declare how many characters the

string is going to hold. Certain API calls in Windows require the

use of fixed-length strings, but generally they are not used in

BASIC. In C they are implemented as an array (or vector) of chars.

 Variable-length string

A variable-length string is one where you don't define the length.

This is the default type in BASIC, and is useful for taking user input

where you don't know what the response will be. The maximum

 Computer Architecture

© MSC EDUCATION HOLDINGS (PTY) LTD Page 94 of 167

length of the string will depend on your environment, but it should

be at least 255 characters.

Rational

A Rational number is a number that can be written in the form

a/b, where a and b are integers, with b ≠ 0 (b is not equal to 0).

The set of all rational numbers is usually denoted by Q. Rational

numbers cannot be represented natively in a computer.

Some programming languages provide a built-in (primitive)

rational data type to represent rational numbers like 1/3 and -

11/17 without rounding, and to do arithmetic on them. Examples

are the ratio type of Common Lisp, and analogous types provided

by most languages for algebraic computation, such as

Mathematica and Maple. Many languages that do not have a built-

in rational type still provide it as a library-defined type.

Boolean

A Boolean variable can store one of two values - either TRUE or

FALSE. Like char, this is usually an integer - in Visual BASIC, for

example, FALSE is 0 and TRUE is -1, and the TRUE and FALSE

values themselves are constants.

In computer science, the Boolean or logical data type is a primitive

data type having one of two values: true or false, intended to

represent the truth values of logic and Boolean algebra.

In programming languages with a built-in Boolean data type, like

Pascal and Java, the comparison operators such as '>' and '≠' are

 Computer Architecture

© MSC EDUCATION HOLDINGS (PTY) LTD Page 95 of 167

usually defined to return a Boolean value. Also, conditional and

iterative commands may be defined to test Boolean-valued

expressions.

Languages without an explicit Boolean data type, like C may still

represent truth values by some other data type. C uses an integer

type, with false represented as the zero value, and true as any

non-zero value (such as 1 or -1). Indeed, a Boolean variable may

be regarded (and be implemented) as a numerical variable with a

single binary digit (bit), which can store only two values.

Variables

A variable is a placeholder of information that can usually be

changed at run-time. Variables allow you to:

 Store information

 Retrieve the stored information

 Manipulate the stored information

Variable Characteristics

A variable has:

 Name

 Type (of stored data)

 Value

Example:

– int count = 5;

– Name: counter

– Type: int

– Value: 5

 Computer Architecture

© MSC EDUCATION HOLDINGS (PTY) LTD Page 96 of 167

3.1.2.1 User defined data types

This is a group of primitive data types defined by the programmer.

For example, if a programmer wanted to store students’ grades in

memory. She will need to store 4 data elements: the student’s ID,

first name, last name, and grade. She could use primitive data

types for each data element, but primitive data types are not

grouped together; each exists as separate data elements.

Another approach is to group primitive data types into a user-

defined data type to form a record. Remember that a database

consists of one or more tables. A table is similar to a spread sheet

consisting of columns and rows. A row is also known as a record.

A user-defined data type defines columns (primitive data types)

that comprise a row (a user-defined data type).

The format used to define a user-defined data type varies

depending on the programming language used to write the

program. Some programming languages, like Java, do not support

user-defined data types but instead, attributes of a class are used

to group together primitive data types.

In the C and C++ programming languages, you define a user-

defined data type by defining a structure. Think of a structure as a

stencil of the letter A. The stencil isn’t the letter A, but it defines

what the letter A looks like. If you want a letter A, you place the

stencil on a piece of paper and trace the letter A. If you want to

make another letter A, you use the same stencil and repeat the

process. You can make as many letter A’s as you wish by using

the stencil.

 Computer Architecture

© MSC EDUCATION HOLDINGS (PTY) LTD Page 97 of 167

ACTIVITY 7 – REVIEWED – US14944 SO1

Complete this activity in your Portfolio of Evidence

Workbooks.

3.2 CHARACTER SETS AND CHARACTER ENCODING

3.2.1 Character encoding

Computer systems process characters using numeric codes not

the graphical representation of the character. For example, when a

database stores the letter X, a numeric code that is interpreted by

software as the letter is stored. These numeric codes are useful in

a global environment because of the potential need to convert data

between different character sets.

You specify an encoded character set when you create a computer

program or a database. Choosing a character set determines

languages that can be represented in the program or the

database. It will affect:

 How you develop applications that process character data

 How you create the database schema

 How the database works with the operating system

A group of characters (for example, alphabetic characters,

ideographs, symbols, punctuation marks, and control characters)

can be encoded as a character set. An encoded character set

assigns unique numeric codes to each character in the character

repertoire (available characters). The numeric codes are called

code points or encoded values.

 Computer Architecture

© MSC EDUCATION HOLDINGS (PTY) LTD Page 98 of 167

The computer industry has various encoded character sets.

Character sets differ in the following ways:

 The number of characters available

 The available characters (the character repertoire)

 The scripts used for writing and the languages they

represent

 The code values assigned to each character

 The encoding scheme used to represent a character

A character encoding system consists of a code that pairs each

character from a given repertoire with something else, such as a

sequence of natural numbers, octets or electrical pulses, in order

to facilitate the transmission of data (generally numbers and/or

text) through telecommunication networks or storage of text in

computers.

Other terms like character encoding, character set(char set),

and sometimes character map or code page are used almost

interchangeably, but these terms now have related but distinct

meanings

To represent numeric, alphabetic, and special characters in a

computer's internal storage and on magnetic media, we must use

some sort of coding system. In computers, the code is made up of

fixed size groups of binary positions. Each binary position in a

group is assigned a specific value; for example 8, 4, 2, or 1. In this

way, every character can be represented by a combination of bits

that is different from any other combination.

 Computer Architecture

© MSC EDUCATION HOLDINGS (PTY) LTD Page 99 of 167

In this section you will learn how the selected coding systems are

used to represent data.

3.2.2 Binary coded decimal

In computer science and electronic systems, binary-coded

decimal (BCD) (sometimes called natural binary-coded decimal,

NBCD) or, in its most common modern implementation, packed

decimal, is an encoding for decimal numbers in which each digit is

represented by its own binary sequence. Its main virtue is that it

allows easy conversion to decimal digits for printing or display, and

allows faster decimal calculations. Its drawbacks are a small

increase in the complexity of circuits needed to implement

mathematical operations. Uncompressed BCD is also a relatively

inefficient encoding—it occupies more space than a purely binary

representation.

In BCD, a digit is usually represented by four bits which, in

general, represent the decimal digits 0 through 9. Other bit

combinations are sometimes used for a sign or for other

indications (e.g., error or overflow).

Although uncompressed BCD is not as widely used as it once was,

decimal fixed-point and floating-point are still important and

continue to be used in financial, commercial, and industrial

computing.

Recent decimal floating-point representations use base-10

exponents, but not BCD encodings. Current hardware

 Computer Architecture

© MSC EDUCATION HOLDINGS (PTY) LTD Page 100 of 167

implementations, however, convert the compressed decimal

encodings to BCD internally before carrying out computations.

Software implementations of decimal arithmetic typically use BCD

or some other 10n base, depending on the operation.

3.2.3 Extended binary coded decimal interchange code

(EBCDIC)

Using an 8-bit code, it is possible to represent 256 different

characters or bit combinations. This provides a unique code for

each decimal value 0 through 9 (for a total of 10), each uppercase

and lowercase letter (for a total of 52), and for a variety of special

characters. In addition to four numeric bits, four zone bit positions

are used in 8-bit code as illustrated in figure below. Each group of

the eight bits makes up one alphabetic, numeric, or special

Format for EBCDIC and ASCII codes

When you look at the table, you will notice that the four rightmost

bits in EBCDIC are assigned values of 8, 4, 2, and 1. The next four

bits to the left are called the zone bits.

Table: Format for EBCDIC Codes

The EBCDIC coding chart for uppercase and lowercase alphabetic

characters and for the numeric digits 0 through 9 is shown in the

next table, with their hexadecimal equivalents. Hexadecimal is a

 Computer Architecture

© MSC EDUCATION HOLDINGS (PTY) LTD Page 101 of 167

number system used with some computer systems. It has a base

of 16 (0-9 and A-F). A represents 10; B represents 11; C

represents 12; D represents 13; E represents 14; and F represents

15. In EBCDIC, the bit pattern 1100 is the zone combination used

for the alphabetic characters A through I, 1101 is used for the

characters J through R, and 1110 is the zone combination used for

characters S through Z. The bit pattern 1111 is the zone

combination used when representing decimal digits. For example,

the code 11000001 is equivalent to the letter A; the code

11110001 is equivalent to the decimal digit 1. Other zone

combinations are used when forming special characters. Not all of

the 256 combinations of 8-bit code have been assigned

characters.

 Computer Architecture

© MSC EDUCATION HOLDINGS (PTY) LTD Page 102 of 167

Table: Eight-bit EBCDIC coding chart

(Including hexadecimal equivalents)

 Computer Architecture

© MSC EDUCATION HOLDINGS (PTY) LTD Page 103 of 167

Since one numeric character can be represented and stored using

only four bits (8-4-2-1), using an 8-bit code allows the

representation of two numeric characters (decimal digits) as

illustrated in the table below. Representing two numeric characters

in one byte (eight bits) is referred to as packing or packed data.

By packing data (numeric characters only) in this way, it allows us

to conserve the amount of storage space required, and at the

same time, increases processing speed.

Table: Packed Data

DECIMAL VALUE 92 73

EBCDIC 10010010 01110011

BIT PLACE VALUES 84218421 8421

8421 B Y T E 1 B Y T E 2

3.2.4 American standard code for information interchange

(ASCII)

Another 8-bit code, known as the American Standard Code for

Information Interchange (ASCII) (pronounced ASS-KEY), was

originally designed as a 7-bit code. Several computer

manufacturers cooperated to develop this code for transmitting

and processing data. The purpose was to standardise a binary

code to give the computer user the capability of using several

machines to process data regardless of the manufacturer: IBM,

HONEYWELL, UNIVAC, BURROUGHS, and so on. However,

since most computers are designed to handle (store and

manipulate) 8-bit code, an 8-bit version of ASCII was developed.

ASCII is commonly used in the transmission of data through data

 Computer Architecture

© MSC EDUCATION HOLDINGS (PTY) LTD Page 104 of 167

communications and is used almost exclusively to represent data

internally in microcomputers.

The concepts and advantages of ASCII are identical to those of

EBCDIC. The important difference between the two coding

systems lies in the 8-bit combinations assigned to represent the

various alphabetic, numeric, and special characters. When using

ASCII 8-bit code, you will notice the selection of bit patterns used

in the positions differs from those used in EBCDIC. For example,

let's look at the characters DP3 in both EBCDIC and ASCII to see

how they compare.

Table: ASCII / EBCDIC Comparison

Character D P 3

EBCDIC 1100 0100 1101 0111 1111 0011

ASCII 0100 0100 0101 0000 0011 0011

In ASCII, rather than breaking letters into three groups, uppercase

letters are assigned codes beginning with hexadecimal value 41

and continuing sequentially through hexadecimal value 5A.

Similarly, lowercase letters are assigned hexadecimal values of 61

through 7A.

The decimal values 1 through 9 are assigned the zone code 0011

in ASCII rather that 1111 as in EBCDIC. The table below is the

ASCII coding chart showing uppercase and lowercase alphabetic

characters and numeric digits 0 through 9.

 Computer Architecture

© MSC EDUCATION HOLDINGS (PTY) LTD Page 105 of 167

Table: Eight-bit ASCII coding chart

(Including hexadecimal equivalents)

 Computer Architecture

© MSC EDUCATION HOLDINGS (PTY) LTD Page 106 of 167

At this point you should understand how coding systems are used

to represent data in both EBCDIC and ASCII. Regardless of what

coding system is used, each character will have an additional bit

called a check bit or parity bit.

Parity Bit

This additional check or parity bit in each storage location is used

to detect errors in the circuitry. Therefore, a computer that uses an

8-bit code, such as EBCDIC or ASCII, will have a ninth bit for parity

checking.

The parity bit (also called a check bit, the C position in a code)

provides an internal means for checking the validity, the

correctness, of code construction. That is, the total number of bits

in a character, including the parity bit, must always be odd or

always be even, depending upon whether the particular computer

system or device you are using is odd or even parity. Therefore,

the coding is said to be in either odd or even parity code, and the

test for bit count is called a parity check.

3.2.5 Unicode

Unicode provides a unique number for every character, no matter

what the platform, no matter what the program, no matter what the

language.

Design Principles. Here we will start from the proclaimed design

principles of Unicode. Later there will be some critical notes and

 Computer Architecture

© MSC EDUCATION HOLDINGS (PTY) LTD Page 107 of 167

considerations. We will first consider the very general, slogan-like

expressions of the goals, and then the more technical principles.

Goals of Unicode: Universality, Efficiency, Unambiguous

The Unicode standard itself says that it was designed to be

universal, efficient, and unambiguous. These slogans have real

meaning here, but it is important to analyze what they mean and

what they do not mean. Let us first see how they are presented in

the Unicode standard, and then analyze each item:

The Unicode Standard was designed to be:

 Universal The repertoire must be large enough to

encompass all characters that are likely to be used in

general text interchange, including those in major

international, national, and industry character sets.

 Efficient Plain text is simple to parse: software does not

have to maintain state or look for special escape sequences,

and character synchronisation from any point in a character

stream is quick and unambiguous. A fixed character code

allows for efficient sorting, searching, display, and editing of

text.

 Unambiguous Any given Unicode code point always

represents the same character.

Universality means much more than just creating a superset of

sets of characters. Practically all other character codes are limited

to the needs of one language or a collection of languages that are

similar in their use of characters, such as Western European

 Computer Architecture

© MSC EDUCATION HOLDINGS (PTY) LTD Page 108 of 167

languages. Unicode needs to encompass a variety of essentially

different collections of characters and writing systems. For

example, it cannot postulate that all text is written left to right, or

that all letters have uppercase and lowercase forms, or that text

can be divided into words separated by spaces or other

whitespace.

Moreover, Unicode has been designed to be universal among

character codes. That is, it assigns code points to the characters

included in other codes, even if the characters could be treated as

variants or combinations of other characters. The reason is that

Unicode was also designed for use as an intermediate code. You

can take character data in any character code and convert it to

Unicode without losing information. If you convert it back, you get

the exact original data. You can also convert it to a third character

code, provided that it is capable of representing all the characters.

If the source and destination codes treat, say, £ (pound sign) and ₤

(lira sign) as different, they will appear as different after the

conversion that used Unicode as an intermediate code.

Thus, universality implies complexity rather than simplicity.

Unicode needs to define properties of characters in a manner that

makes explicit many things that we might take for granted because

they are not evident at all across writing systems.

Efficiency refers here to efficient processing of data. When all

characters have unique identifying numbers, and they are

internally represented by those numbers, it is much easier to work

with character data than in a system where the same number may

 Computer Architecture

© MSC EDUCATION HOLDINGS (PTY) LTD Page 109 of 167

mean different characters, depending on encoding or font or other

issues. However, efficiency is relative. In particular:

 Efficiency of processing often requires presentation that is

wasteful in terms of storage needed (e.g., using four octets

for each character). This in turn causes inefficiency in data

transfer.

 The representation forms of Unicode are not always efficient

in processing. In particular, the common UTF-8 format

requires linear processing of the data stream in order to

identify characters; it is not possible to jump to the nth

character in a UTF-8 encoded string.

 Unicode contains a large amount of characters and features

that have been included only for compatibility with other

standards. This may require pre-processing that deals with

compatibility characters and with different Unicode

representations of the same character (e.g., letter é as a

single character or as two characters).

 For a specific data-processing task, Unicode can be less

efficient than other codes. The efficiency goal needs to be

understood with the implicit reservation "to the extent

possible, given the universality goal."

Unambiguity may look like a self-evident principle, but not all

character codes are unambiguous in the Unicode sense. For

example, ISO 646 permits variation in some code points, allowing

the use of a single code point for either # or £ by special

agreement. Moreover, in Unicode, unambiguity also means

unambiguity across time and versions: a code point, once

assigned, will never be re-assigned in a future version.

 Computer Architecture

© MSC EDUCATION HOLDINGS (PTY) LTD Page 110 of 167

Sometimes a fourth fundamental principle, uniformity, is

mentioned. It has been described as a principle of using a fixed-

length character code, to allow efficient processing of text.

However, as currently defined, Unicode does not use a fixed-

length code in a simple sense. In some Unicode encodings, all

characters are represented using the same number of octets (or

bits), but in many important encodings, such as UTF-8, the lengths

may vary.

The 10 Design Principles

The Unicode standard describes "The 10 Unicode Design

Principles,” where the first two are the same as those quoted in the

previous section, universality and efficiency. The unambiguity

principle is not included. Obviously, the principles are meant to

describe how Unicode was designed, whereas the slogan

"Universality, Efficiency, Unambiguity" is meant to describe the

ultimate goals.

The standard admits that there are conflicts between the

principles, and it does not specify how the conflicts are resolved.

As a whole, the set of principles describe ideas of varying levels

(from fundamentals to technicalities), and it should be read

critically. It is however important to know the underlying ideas, so

we will discuss them briefly:

Universality

Unicode defines a single repertoire of characters for universal use.

(See the previous section for other aspects of universality.)

 Computer Architecture

© MSC EDUCATION HOLDINGS (PTY) LTD Page 111 of 167

Efficiency

Unicode text is simple to process. (See the previous section for the

complexity of this issue.)

Characters, not glyphs

Unicode assigns code points to characters as abstractions, not to

visual appearances. Although there are many borderline cases,

and although the compatibility characters can be seen as violating

this principle, it is still one of the fundamentals of Unicode. The

relationship between characters and glyphs is rather simple for

languages like English: mostly each character is presented by one

glyph, taken from a font that has been chosen. For other

languages, the relationship can be much more complex e.g.

routinely combining several characters into one glyph.

Semantics

Characters have well-defined meanings. In fact, the meanings are

often defined rather indirectly or implicitly, if at all but Unicode are

generally much more explicit about meanings than other character

code standards, including ISO 10646. When the Unicode standard

refers to semantics, it often means (mostly) the properties of

characters, such spacing, combinability, and directionality, rather

than what the character really means. This is largely intentional:

the ultimate meaning may vary by language, context, and usage;

think about the various uses of the comma in English and other

languages e.g., as thousands separator or as a decimal separator.

Plain text

 Computer Architecture

© MSC EDUCATION HOLDINGS (PTY) LTD Page 112 of 167

Unicode deals with plain text i.e. strings of characters without

formatting or structuring information (except for things like line

breaks). In practice, Unicode text is mostly used along with some

formatting or structuring information, such as a word processor's

formatting commands or some markup; but that is treated as a

separate layer in data, above the character level and outside the

scope of the Unicode standard.

Logical order

The default representation of Unicode data uses logical order of

data, as opposed to approaches that handle writing direction by

changing the order of characters. The ordering principles also put

all diacritics after the base character to which they are applied,

regardless of visual placement. For example, the Greek capital

letter omega with tonos has the tonos (stress mark) visually on the

left of the omega, but the decomposed form of this character still

consists of omega followed by combining tonos.

Unification

Unicode encodes duplicates of a character as a single code point,

if they belong to the same script but different languages. For

example, the letter ü denoting a particular vowel in German is

treated as the same as the letter ü in Spanish, where it simply

indicates that the "u" is pronounced, in a context where it would

otherwise be mute.

Dynamic composition

Characters with diacritic marks can be composed dynamically,

using characters designated as combining marks. You can take

 Computer Architecture

© MSC EDUCATION HOLDINGS (PTY) LTD Page 113 of 167

almost any character and combine it with any diacritic; for

example, you can create, (comma with tilde) by using the normal

comma character and a combining tilde. Therefore, you can write

many more characters using Unicode than there are characters in

Unicode (i.e., code points allocated to characters) You can also

use multiple combining marks on a character (e.g., you can just

make up "a" with both a tilde and an acute accent:), although

good rendering of such combinations often requires advanced

techniques.

Equivalent sequences

Unicode has a large number of characters that are pre-composed

forms, such as é. They have decompositions that are declared as

equivalent to the pre-composed form. An application may still treat

the pre-composed form and the decomposition differently, since as

strings of encoded characters, they are distinct. However, usually

such distinctions are not made, and should not be made. The

Unicode standard does not declare either the pre-composed form

or the decomposed form as preferred; they are just two different

forms. So-called normalisation may make either form preferred in

some contexts.

Convertibility

Character data can be accurately converted between Unicode and

other character standards and specifications. As explained earlier,

this can be regarded as part of the universality principle.

Somewhat surprisingly, the list does not mention stability or

continuity. Yet, one of the leading principles in Unicode strategy

 Computer Architecture

© MSC EDUCATION HOLDINGS (PTY) LTD Page 114 of 167

(as described in the goals as "unambiguity") is that a code point

assignment once made will never be changed. When a number

and a name have been given to a character, they will remain in all

future versions, though the properties of the character may be

changed.

Unicode Terms

Deprecated and Obsolete Characters

A deprecated character is a character that has been included in

Unicode but declared as deprecated in the Unicode standard. This

indicates a strong recommendation that the character not be used.

It remains in Unicode, though, due to the stability principle. For

example, a character may be declared deprecated if it turns out

that it was introduced into Unicode in error.

Digraphs

A digraph is a combination of two successive characters treated as

a unit in some sense, such as "ch" in many languages (e.g., when

used to indicate one sound) or "ll" in Spanish, where it denotes a

particular sound and might be treated in sorting as if it were a

single character. Thus, a digraph is a pragmatic concept, not a

formal one, and it is an example of a text element.

Text Elements

The concept of text element is informal: it means a sequence of

characters (including the special case of one character) that is

treated as a unit in some processing. In typical character input and

output, characters are text elements. In layout processes, syllables

might be treated as text elements, since line breaks are usually

 Computer Architecture

© MSC EDUCATION HOLDINGS (PTY) LTD Page 115 of 167

allowed between syllables but not within them. When you form a

text concordance (a list of occurrences of words e.g., in alphabetic

order), a word is a text element.

Unicode Strings

The term "Unicode string" has a more technical meaning than you

might expect. It does not refer to a string (sequence) of Unicode

characters (code points) but to a sequence of code units. Thus, the

components of the string are of fixed size in bits (in practice, 8, 16,

or 32 bits). In many programming languages, Unicode strings have

a code unit size of 16 bits. This does not limit the range of

characters, since such a string could be interpreted according to

UTF-16.

Table: Unicode Chart

Range Decimal Name

0x0000-0x007F 0-127 Basic Latin

0x0080-0x00FF 128-255 Latin-1 Supplement

0x0100-0x017F 256-383 Latin Extended-A

0x0180-0x024F 384-591 Latin Extended-B

0x0250-0x02AF 592-687 IPA Extensions

0x02B0-0x02FF 688-767 Spacing Modifier Letters

0x0300-0x036F 768-879 Combining Diacritical Marks

0x0370-0x03FF 880-1023 Greek

0x0400-0x04FF 1024-1279 Cyrillic

0x0530-0x058F 1328-1423 Armenian

0x0590-0x05FF 1424-1535 Hebrew

0x0600-0x06FF 1536-1791 Arabic

0x0700-0x074F 1792-1871 Syriac

0x0780-0x07BF 1920-1983 Thaana

0x0900-0x097F 2304-2431 Devanagari

0x0980-0x09FF 2432-2559 Bengali

http://www.ssec.wisc.edu/~tomw/java/unicode.html#x0000
http://www.ssec.wisc.edu/~tomw/java/unicode.html#x0080
http://www.ssec.wisc.edu/~tomw/java/unicode.html#x0100
http://www.ssec.wisc.edu/~tomw/java/unicode.html#x0180
http://www.ssec.wisc.edu/~tomw/java/unicode.html#x0250
http://www.ssec.wisc.edu/~tomw/java/unicode.html#x02B0
http://www.ssec.wisc.edu/~tomw/java/unicode.html#x0300
http://www.ssec.wisc.edu/~tomw/java/unicode.html#x0370
http://www.ssec.wisc.edu/~tomw/java/unicode.html#x0400
http://www.ssec.wisc.edu/~tomw/java/unicode.html#x0530
http://www.ssec.wisc.edu/~tomw/java/unicode.html#x0590
http://www.ssec.wisc.edu/~tomw/java/unicode.html#x0600
http://www.ssec.wisc.edu/~tomw/java/unicode.html#x0700
http://www.ssec.wisc.edu/~tomw/java/unicode.html#x0780
http://www.ssec.wisc.edu/~tomw/java/unicode.html#x0900
http://www.ssec.wisc.edu/~tomw/java/unicode.html#x0980

 Computer Architecture

© MSC EDUCATION HOLDINGS (PTY) LTD Page 116 of 167

0x0A00-0x0A7F 2560-2687 Gurmukhi

0x0A80-0x0AFF 2688-2815 Gujarati

0x0B00-0x0B7F 2816-2943 Oriya

0x0B80-0x0BFF 2944-3071 Tamil

0x0C00-0x0C7F 3072-3199 Telugu

0x0C80-0x0CFF 3200-3327 Kannada

0x0D00-0x0D7F 3328-3455 Malayalam

0x0D80-0x0DFF 3456-3583 Sinhala

0x0E00-0x0E7F 3584-3711 Thai

0x0E80-0x0EFF 3712-3839 Lao

0x0F00-0x0FFF 3840-4095 Tibetan

0x1000-0x109F 4096-4255 Myanmar

0x10A0-0x10FF 4256-4351 Georgian

0x1100-0x11FF 4352-4607 Hangul Jamo

0x1200-0x137F 4608-4991 Ethiopic

0x13A0-0x13FF 5024-5119 Cherokee

0x1400-0x167F 5120-5759
Unified Canadian Aboriginal
Syllabics

0x1680-0x169F 5760-5791 Ogham

0x16A0-0x16FF 5792-5887 Runic

0x1780-0x17FF 6016-6143 Khmer

0x1800-0x18AF 6144-6319 Mongolian

0x1E00-0x1EFF 7680-7935 Latin Extended Additional

0x1F00-0x1FFF 7936-8191 Greek Extended

0x2000-0x206F 8192-8303 General Punctuation

0x2070-0x209F 8304-8351 Superscripts and Subscripts

0x20A0-0x20CF 8352-8399 Currency Symbols

0x20D0-0x20FF 8400-8447
Combining Marks for
Symbols

0x2100-0x214F 8448-8527 Letterlike Symbols

0x2150-0x218F 8528-8591 Number Forms

0x2190-0x21FF 8592-8703 Arrows

0x2200-0x22FF 8704-8959 Mathematical Operators

0x2300-0x23FF 8960-9215 Miscellaneous Technical

http://www.ssec.wisc.edu/~tomw/java/unicode.html#x0A00
http://www.ssec.wisc.edu/~tomw/java/unicode.html#x0A80
http://www.ssec.wisc.edu/~tomw/java/unicode.html#x0B00
http://www.ssec.wisc.edu/~tomw/java/unicode.html#x0B80
http://www.ssec.wisc.edu/~tomw/java/unicode.html#x0C00
http://www.ssec.wisc.edu/~tomw/java/unicode.html#x0C80
http://www.ssec.wisc.edu/~tomw/java/unicode.html#x0D00
http://www.ssec.wisc.edu/~tomw/java/unicode.html#x0D80
http://www.ssec.wisc.edu/~tomw/java/unicode.html#x0E00
http://www.ssec.wisc.edu/~tomw/java/unicode.html#x0E80
http://www.ssec.wisc.edu/~tomw/java/unicode.html#x0F00
http://www.ssec.wisc.edu/~tomw/java/unicode.html#x1000
http://www.ssec.wisc.edu/~tomw/java/unicode.html#x10A0
http://www.ssec.wisc.edu/~tomw/java/unicode.html#x1100
http://www.ssec.wisc.edu/~tomw/java/unicode.html#x1200
http://www.ssec.wisc.edu/~tomw/java/unicode.html#x13A0
http://www.ssec.wisc.edu/~tomw/java/unicode.html#x1400
http://www.ssec.wisc.edu/~tomw/java/unicode.html#x1400
http://www.ssec.wisc.edu/~tomw/java/unicode.html#x1680
http://www.ssec.wisc.edu/~tomw/java/unicode.html#x16A0
http://www.ssec.wisc.edu/~tomw/java/unicode.html#x1780
http://www.ssec.wisc.edu/~tomw/java/unicode.html#x1800
http://www.ssec.wisc.edu/~tomw/java/unicode.html#x1E00
http://www.ssec.wisc.edu/~tomw/java/unicode.html#x1F00
http://www.ssec.wisc.edu/~tomw/java/unicode.html#x2000
http://www.ssec.wisc.edu/~tomw/java/unicode.html#x2070
http://www.ssec.wisc.edu/~tomw/java/unicode.html#x20A0
http://www.ssec.wisc.edu/~tomw/java/unicode.html#x20D0
http://www.ssec.wisc.edu/~tomw/java/unicode.html#x20D0
http://www.ssec.wisc.edu/~tomw/java/unicode.html#x2100
http://www.ssec.wisc.edu/~tomw/java/unicode.html#x2150
http://www.ssec.wisc.edu/~tomw/java/unicode.html#x2190
http://www.ssec.wisc.edu/~tomw/java/unicode.html#x2200
http://www.ssec.wisc.edu/~tomw/java/unicode.html#x2300

 Computer Architecture

© MSC EDUCATION HOLDINGS (PTY) LTD Page 117 of 167

0x2400-0x243F 9216-9279 Control Pictures

0x2440-0x245F 9280-9311
Optical Character
Recognition

0x2460-0x24FF 9312-9471 Enclosed Alphanumerics

0x2500-0x257F 9472-9599 Box Drawing

0x2580-0x259F 9600-9631 Block Elements

0x25A0-0x25FF 9632-9727 Geometric Shapes

0x2600-0x26FF 9728-9983 Miscellaneous Symbols

0x2700-0x27BF 9984-10175 Dingbats

0x2800-0x28FF 10240-10495 Braille Patterns

0x2E80-0x2EFF 11904-12031 CJK Radicals Supplement

0x2F00-0x2FDF 12032-12255 Kangxi Radicals

0x2FF0-0x2FFF 12272-12287
Ideographic Description
Characters

0x3000-0x303F 12288-12351
CJK Symbols and
Punctuation

0x3040-0x309F 12352-12447 Hiragana

0x30A0-0x30FF 12448-12543 Katakana

0x3100-0x312F 12544-12591 Bopomofo

0x3130-0x318F 12592-12687 Hangul Compatibility Jamo

0x3190-0x319F 12688-12703 Kanbun

0x31A0-0x31BF 12704-12735 Bopomofo Extended

0x3200-0x32FF 12800-13055
Enclosed CJK Letters and
Months

0x3300-0x33FF 13056-13311 CJK Compatibility

0x3400-0x4DB5 13312-19893
CJK Unified Ideographs
Extension A

0x4E00-0x9FFF 19968-40959 CJK Unified Ideographs

0xA000-0xA48F 40960-42127 Yi Syllables

0xA490-0xA4CF 42128-42191 Yi Radicals

0xAC00-0xD7A3 44032-55203 Hangul Syllables

0xD800-0xDB7F 55296-56191 High Surrogates

0xDB80-0xDBFF 56192-56319 High Private Use Surrogates

0xDC00-0xDFFF 56320-57343 Low Surrogates

http://www.ssec.wisc.edu/~tomw/java/unicode.html#x2400
http://www.ssec.wisc.edu/~tomw/java/unicode.html#x2440
http://www.ssec.wisc.edu/~tomw/java/unicode.html#x2440
http://www.ssec.wisc.edu/~tomw/java/unicode.html#x2460
http://www.ssec.wisc.edu/~tomw/java/unicode.html#x2500
http://www.ssec.wisc.edu/~tomw/java/unicode.html#x2580
http://www.ssec.wisc.edu/~tomw/java/unicode.html#x25A0
http://www.ssec.wisc.edu/~tomw/java/unicode.html#x2600
http://www.ssec.wisc.edu/~tomw/java/unicode.html#x2700
http://www.ssec.wisc.edu/~tomw/java/unicode.html#x2800
http://www.ssec.wisc.edu/~tomw/java/unicode.html#x2E80
http://www.ssec.wisc.edu/~tomw/java/unicode.html#x2F00
http://www.ssec.wisc.edu/~tomw/java/unicode.html#x2FF0
http://www.ssec.wisc.edu/~tomw/java/unicode.html#x2FF0
http://www.ssec.wisc.edu/~tomw/java/unicode.html#x3000
http://www.ssec.wisc.edu/~tomw/java/unicode.html#x3000
http://www.ssec.wisc.edu/~tomw/java/unicode.html#x3040
http://www.ssec.wisc.edu/~tomw/java/unicode.html#x30A0
http://www.ssec.wisc.edu/~tomw/java/unicode.html#x3100
http://www.ssec.wisc.edu/~tomw/java/unicode.html#x3130
http://www.ssec.wisc.edu/~tomw/java/unicode.html#x3190
http://www.ssec.wisc.edu/~tomw/java/unicode.html#x31A0
http://www.ssec.wisc.edu/~tomw/java/unicode.html#x3200
http://www.ssec.wisc.edu/~tomw/java/unicode.html#x3200
http://www.ssec.wisc.edu/~tomw/java/unicode.html#x3300
http://www.ssec.wisc.edu/~tomw/java/unicode.html#x3400
http://www.ssec.wisc.edu/~tomw/java/unicode.html#x3400
http://www.ssec.wisc.edu/~tomw/java/unicode.html#x4E00
http://www.ssec.wisc.edu/~tomw/java/unicode.html#xA000
http://www.ssec.wisc.edu/~tomw/java/unicode.html#xA490
http://www.ssec.wisc.edu/~tomw/java/unicode.html#xAC00
http://www.ssec.wisc.edu/~tomw/java/unicode.html#xD800
http://www.ssec.wisc.edu/~tomw/java/unicode.html#xDB80
http://www.ssec.wisc.edu/~tomw/java/unicode.html#xDC00

 Computer Architecture

© MSC EDUCATION HOLDINGS (PTY) LTD Page 118 of 167

0xE000-0xF8FF 57344-63743 Private Use

0xF900-0xFAFF 63744-64255 CJK Compatibility Ideographs

0xFB00-0xFB4F 64256-64335
Alphabetic Presentation
Forms

0xFB50-0xFDFF 64336-65023 Arabic Presentation Forms-A

0xFE20-0xFE2F 65056-65071 Combining Half Marks

0xFE30-0xFE4F 65072-65103 CJK Compatibility Forms

0xFE50-0xFE6F 65104-65135 Small Form Variants

0xFE70-0xFEFE 65136-65278 Arabic Presentation Forms-B

0xFEFF-0xFEFF 65279-65279 Specials

0xFF00-0xFFEF 65280-65519
Halfwidth and Fullwidth
Forms

0xFFF0-0xFFFD 65520-65533 Specials

ACTIVITY 8 – REVIEWED – US14944 SO 1

Complete this activity in your Portfolio of

Evidence Workbooks.

http://www.ssec.wisc.edu/~tomw/java/unicode.html#xE000
http://www.ssec.wisc.edu/~tomw/java/unicode.html#xF900
http://www.ssec.wisc.edu/~tomw/java/unicode.html#xFB00
http://www.ssec.wisc.edu/~tomw/java/unicode.html#xFB00
http://www.ssec.wisc.edu/~tomw/java/unicode.html#xFB50
http://www.ssec.wisc.edu/~tomw/java/unicode.html#xFE20
http://www.ssec.wisc.edu/~tomw/java/unicode.html#xFE30
http://www.ssec.wisc.edu/~tomw/java/unicode.html#xFE50
http://www.ssec.wisc.edu/~tomw/java/unicode.html#xFE70
http://www.ssec.wisc.edu/~tomw/java/unicode.html#xFEFF
http://www.ssec.wisc.edu/~tomw/java/unicode.html#xFF00
http://www.ssec.wisc.edu/~tomw/java/unicode.html#xFF00
http://www.ssec.wisc.edu/~tomw/java/unicode.html#xFFF0

 Computer Architecture

© MSC EDUCATION HOLDINGS (PTY) LTD Page 119 of 167

3.3 DATA MANIPULATION

Data manipulation refers to changes that can be made onto the

different data types for example manipulating integers.

For example many programming languages have several routines

that are useful for manipulating data types. They may include:

Arithmetic Operators

Routines which performs arithmetic operations on decimal, float,

money, numeric, and real data types.

These operators are likely to be the operators most familiar to you

because these are math operators that you are used to using for

normal math. There are seven common arithmetic operators.

Comparison Operators

Routines which compares date, time, decimal, float, money,

numeric, and real data types Comparison operators are used to

 Computer Architecture

© MSC EDUCATION HOLDINGS (PTY) LTD Page 120 of 167

compare two things. You will find that when you get to working with

code and its structure these will be really useful.

There are six comparison operators. Each of these returns is either

true or false, depending on whether the outcome of the

comparison is true or false.

Assignment Operators

Assignment operators are used to assign a value. These will be

used extensively when using variables. There are six assignment

operators. In the preceding examples, x and y are both variables.

Variables need to have unique names (unless you are reusing

them).

 Computer Architecture

© MSC EDUCATION HOLDINGS (PTY) LTD Page 121 of 167

Logical Operators

Logical operators enable you to introduce logic to the code you

write and enable you to make combinations of the preceding

operators. There are three logical operators.

 Computer Architecture

© MSC EDUCATION HOLDINGS (PTY) LTD Page 122 of 167

String Operators

String operators are operators that work on strings. Strings are

usually snippets of text. Here are two sample strings:

string1 = “Hello”

string2 = “World ”

Using string operators, you can join (or concatenate) strings

together.

string3 = string1 + string2

The variable string3 will now hold the value Hello World!

One thing that newcomers to strings seem to find hard to cope with

is spaces. That is, keeping track of spaces between strings and

making sure that the end string makes sense.

ACTIVITY 9 – REVIEWED – US149442 SO1

Complete this activity in your Portfolio of Evidence

Workbooks.

 Computer Architecture

© MSC EDUCATION HOLDINGS (PTY) LTD Page 123 of 167

3.4 COMPUTER DATA STRUCTURES

3.4.1 Types of data structures

Data structure is a way of organising data that considers not only

the data items stored but also the relationship to each other.

Figure: Types of data structures

3.4.1.1 Primitive Data Structure

Primitive Data types are those not defined in terms of other data

types. The primitive data types of a language, along with one or

more type constructors provide structured types.

Numeric Types

Integer

The integer is the most common primitive data type. The integer is

almost always an exact reflection of the hardware, so the mapping

is trivial. There may be as many as eight different integer types in a

 Computer Architecture

© MSC EDUCATION HOLDINGS (PTY) LTD Page 124 of 167

language. For example java has four integer types i.e. byte, short,

int and long. Some languages use unsigned integers which are

integer values without signs and are used for binary data. Integer

types are supported by the hardware.

Floating-point

These model real numbers, but are only approximations for most

real values. For example TT cannot be represented in floating-

point notation. On most computers, floating-point numbers are

stored in binary, which exacerbates the problem. Another problem

is the loss of accuracy through arithmetic operations.

Languages for scientific use support at least two floating-point

types; sometimes more (e.g. float, and double.) The collection of

values that can be represented by a floating-point type is defined

in terms of precision and range.

Precision: is the accuracy of the fractional part of a value,

measured as the number of bits. Figure below shows single and

double precision.

Range: is the range of fractions and exponents.

Decimal

The majority of larger computers that are designed to support

business applications have hardware support for decimal data

types. Decimal types store a fixed number of decimal digits, with

the decimal point at a fixed position in the value.

 Computer Architecture

© MSC EDUCATION HOLDINGS (PTY) LTD Page 125 of 167

Figure: Decimal types store

 Advantage: accuracy of decimal values.

 Disadvantages: limited range since no exponents are

allowed, and its representation wastes memory.

Boolean Types

Introduced by ALGOL 60, Boolean types are perhaps the smallest

of all data types. Their range of value is made up of only two

elements: True and False.

They are used to represent switched and flags in programs, but

other values like integers can be used for this purpose. Booleans

can be stored in a bit but are usually stored in the smallest

efficiently addressable cell of memory usually a byte. The use of

Booleans enhances readability.

Character Types

Char types are stored as numeric coding (ASCII / Unicode).

 Computer Architecture

© MSC EDUCATION HOLDINGS (PTY) LTD Page 126 of 167

3.4.1.2 Non-Primitive Data Structures

An array

An array is a way to reference a series of memory locations using

the same name. Each memory location is represented by an array

element. An array element is similar to one variable except it is

identified by an index value instead of a name. An index value is a

number used to identify an array element.

For example an array called grades. The first array element is

called grades[0]. The zero is the index value. The square bracket

tells the computer that the value inside the square bracket is an

index.

grades[0]

grades[1]

grades[2]

Each array element is like a variable name. For example, the

following variables are equivalent to array elements. There are

similarities between array elements and variables—here are three

integer variables:

int maryGrade;

int bobGrade;

int amberGrade;

You store a value into a memory location by using an assignment

statement. Here are two assignment statements. The first assigns

a value to a variable, and the other assigns a value to an array

element. Notice that these statements are practically the same

 Computer Architecture

© MSC EDUCATION HOLDINGS (PTY) LTD Page 127 of 167

except reference is made to the index of the array element in the

second statement:

int grades[1];

maryGrade = 90;

grades[0] = 90;

Suppose you want to use the value stored in a memory location.

There are a number of ways to do this in a program, but a common

way is to use another assignment statement like the ones shown in

the next example. The first assignment statement uses two

variables, the next assignment statement uses two array elements,

and the last assignment statement assigns the value referenced by

a variable name and assigns that value to an array element:

bobGrade = maryGrade;

grades[0] = grades[1];

grades[0] = bobGrade;

A stack

When you hear the term “stack” used outside the context of

computer programming, you might envision a stack of dishes on

your kitchen counter. This organisation is structured in a particular

way: the newest dish is on top and the oldest is on the bottom of

the stack.

Each dish in a stack is accessed using FIFO: first in, first out. The

only way to access each dish is from the top of the stack. If you

want the third dish (the third oldest on the stack), then you must

remove the first two dishes from the top of the stack. This places

 Computer Architecture

© MSC EDUCATION HOLDINGS (PTY) LTD Page 128 of 167

the third dish at the top of the stack making it available to be

removed.

There’s no way to access a dish unless the dish is at the top of the

stack. You might be thinking stacks are inefficient, and you’d be

correct if the objective was to randomly access things on the stack.

There are other data structures that are ideal for random access,

which you’ll learn about throughout this book.

However, if the object is to access things in the order in which they

were placed on the stack, such as computer instructions, stacks

are efficient. In these situations, using a stack makes a lot of

sense.

Note: Stacks and arrays are often bantered about in the same

discussion, which can easily lead to confusion, but they are really

two separate things. An array stores values in memory; a stack

tracks which array element is at the top of the stack. When a value

is popped off the stack, the value remains in memory because the

value is still assigned to an array element. Popping it only changes

the array element that is at the top of the stack.

 Computer Architecture

© MSC EDUCATION HOLDINGS (PTY) LTD Page 129 of 167

Figure: Stacks and arrays

A queue

A queue is a sequential organization of data. Data is accessible

using FIFO. That is, the first data in the queue is the first data that

is accessible by your program.

Programmers use one of two kinds of queues depending in the

objective of the program, a simple queue or a priority queue. A

simple queue organises items in a line where the first item is at the

beginning of the line and the last item is at the back of the line.

Each item is processed in the order in which it appears in the

queue. The first item in line is processed first, followed by the

second item and then the third until the last item on the line is

processed. There isn’t any way for an item to cut the line and be

processed out of order.

 Computer Architecture

© MSC EDUCATION HOLDINGS (PTY) LTD Page 130 of 167

A priority queue is similar to a simple queue in that items are

organized in a line and processed sequentially. However, items on

a priority queue can jump to the front of the line if they have

priority. Priority is a value that is associated with each item placed

in the queue. The program processes the queue by scanning the

queue for items with high priority. These are processed first

regardless of their position in the line. All the other items are then

processed sequentially after high priority items are processed.

A linked list

A linked list is a data structure that makes it easy to rearrange the

data without having to move data in memory. Sound a little

confusing? If so, picture a classroom of students who are seated in

no particular order. A unique number identifies each seat, as

illustrated. We’ve also included the relative height of each student,

which we’ll use in the next exercise.

Figure: Linked list is a data

Let’s say that a teacher needs to place students’ names in

alphabetical order so she can easily find a name on the list. One

option is to have students change their seats so that Adam sits in

 Computer Architecture

© MSC EDUCATION HOLDINGS (PTY) LTD Page 131 of 167

seat 1, Bob sits in seat 2, and Mary in seat 3. However, this can be

chaotic if there are a lot of students in the class.

Another option is to leave students seated and make a list of seat

numbers that corresponds to the alphabetical order of students.

The list would look something like this: 3, 1, and 2, as shown in

illustration. The student in seat 3 is the first student who appears in

alphabetical order, followed by the student seated in seat 1, and so

on. Notice how this option doesn’t disrupt the class.

Suppose you want to rearrange students in size order. There’s a

pretty good chance that you won’t move students about the

classroom. Instead, you’d probably create another list of seat

numbers that reflect each student’s height. Here’s the list: 1, 3, and

2, which is illustrated. The list can be read from bottom to top for

the shortest to tallest or vice versa for tallest to shortest.

ACTIVITY 10 – REVIEWED – US14944 SO2

Complete this activity in your Portfolio of Evidence

Workbooks.

 Computer Architecture

© MSC EDUCATION HOLDINGS (PTY) LTD Page 132 of 167

3.4.2 Computer files and file organisation

3.4.2.1 Terminology

Field Each named unit of information to which one can make

reference. Examples: Person No, Name, Age etc. Field length may

be either fixed (e.g. Person No) or variable (Name). If variable, one

may treat it as an adequately long fixed-length field. If an actual

value is shorter, the rest of the field may be padded with spaces. If

it is too long, one would need to truncate the field. This is possible

as long as no essential information is lost in trimming the value.

There is some waste of storage space though. One may allow the

field to take variable length values by ending each field with an

end-of-field character. This eliminates wasted storage but

complicates processing.

Record (Logical Record). Is a grouping of fields as viewed by the

user. Example: Personnel Record = (Person No, Name, Age, Sex,

Date appointed). The key field in a record is the field or the

collection of fields which can be used to uniquely identify a record.

E.g. Person No in Personnel record. Like fields, records may also

have fixed or variable lengths. Fixed-length records comprise a

fixed number of fixed-length fields, whereas variable-length

records usually comprise a fixed number of fields some of which

are of variable length.

File A file is a collection of records, all of the same type, i.e.

comprising the same collection of fields.

 Computer Architecture

© MSC EDUCATION HOLDINGS (PTY) LTD Page 133 of 167

Block (Physical Record). Is the physical unit of transfer between

the backing store and the main store. This is the smallest amount

of information that can be transferred. A physical record usually

contains more than one whole logical record. The precise number

depends on the block size and the logical record size. For

example, a 2400 byte block will contain nine 256 byte records. On

a magnetic disc, a sector is usually a block.

Bucket Is the logical unit of transfer between the backing storage

and main memory. Bucket size is limited by the size of the main

memory buffer available for input/output. If an 8k buffer is

available, then a bucket may contain as many as three 2400 byte

blocks. On a magnetic tape, the physical and the logical units of

transfer are usually the same, i.e., a bucket contains precisely one

block. On a magnetic disc, a bucket usually contains more than

one sector or block.

Hit In a processing run, a record that is required is a hit. For

example, if the record for Person No = A111 needs to be updated,

it will be hit. The hit rate is the fraction of records which is required

for processing.

Hit rate = No of records required / Total records in file.

The kind of file organisation best suited for an application is

determined largely by the typical hit rate.

3.4.2.2 File organisation

File organisation is the methodology which is applied to structured

computer files. Files contain computer records which can be

documents or information which is stored in a certain way for later

 Computer Architecture

© MSC EDUCATION HOLDINGS (PTY) LTD Page 134 of 167

retrieval. File organisation refers primarily to the logical

arrangement of data (which can itself be organised in a system of

records with correlation between the fields/columns) in a file

system.

The four main kinds of file organization are

i) Serial (Heap or Pile)

ii) Sequential (Ordered)

iii) Random (Direct), and

iv) Indexed sequential.

The main characteristics of these organisations as follows;

i) Serial files

Records in a serial file are inserted as they arrive. The file is

usually read serially from beginning to end. Searching individual

records is difficult because in each case the entire file must be

read. On average, one half of the file must be read if the record is

present and all of the file must be read if it is not present.

Serial files are usually used for temporary storage of transaction

data. They can be constructed on serial or direct access media.

ii) Sequential files

In a sequential file, records are arranged in key value order,

usually ascending but it can equally well be descending. The file is

usually read in the order in which it is written, from beginning to

end. (Although it is possible to read serial and sequential files in

other-than-serial order, this would be slow due to mechanical

movement involved, irrespective of the nature of the storage

medium.

 Computer Architecture

© MSC EDUCATION HOLDINGS (PTY) LTD Page 135 of 167

Sequential file organisation is best for high hit rate applications, i.e.

when in a typical run a high proportion of the records are required.

Sequential files can be constructed on magnetic tape as well as

magnetic disc. If constructed on a magnetic tape, searching for

individual records is very slow. On average, one must look through

half the file whether the record is there or not. In this sequential

organisation is only marginally better than serial organisation. If the

file is on magnetic disc, searching is much more efficient because

one can employ binary search. This is like looking for a word in a

dictionary. One probes the file a number of times and at each

probe halves the search interval. This process continues till one

either finds the required record, or is able to decide that the record

is not in the file.

In a file with N buckets, the maximum number of binary probes

required to retrieve a record is proportional to N log N, where the

logarithm is to base 2. In spite of the much higher efficiency of

binary searching, retrieving individual records from a sequential file

is not economical because each probe requires mechanical

movement and is therefore slow.

The greatest strength of sequential files is that two sequential files

which share a key field and are ordered in the same way can be

merged very efficiently. In a typical application, a transaction file

which is initially built as a serial file is sorted into a sequential file

and then used to update an old sequential master file.

 Computer Architecture

© MSC EDUCATION HOLDINGS (PTY) LTD Page 136 of 167

Figure: Sequential files

iii) Random or Direct files

The records are not in ascending or descending key value order,

but appear to be random. In fact, the storage address for a record

(the bucket address) is calculated from the value of the key field by

using a hash function. (One makes a hash of the key to produce a

storage address).

Bucket address = Hash(Key).

Direct files are created on direct access media. In order to retrieve

a record given its key value, one applies the hash function to

obtain a bucket address, retrieves the bucket and examines its

contents to see if the required record is there. Retrieval of

individual records is therefore quick and direct files are ideal for

low hit-rate applications. For example, if the balance in a

customer’s account is to be updated as soon as a transaction is

completed (a deposit or a withdrawal is made at the counter), one

would organize the Customer Account file as a direct file on a

magnetic disc.

 Computer Architecture

© MSC EDUCATION HOLDINGS (PTY) LTD Page 137 of 167

iv) Indexed sequential files

Many applications require a mixture of low and high hit rate

processing. In these cases, neither sequential nor direct

organisation is adequate. Indexed sequential files are ideal for

such applications. Because the records are organised sequentially,

high hit rate processing is well supported. Direct access of

individual records for low hit rate applications is provided by an

index.

Consider a file of customer accounts held by a credit card agency.

It contains three fields: Acct No, Credit Limit and Balance. Every

time a customer wants to make a purchase, his credit limit and

balance must be checked; this requires individual access to his

record. Every month, a statement must be produced for each

customer; this requires sequential access to the whole file.

Figure: Indexed sequential files

Index -- is a special file of records with two attributes, key value

and the storage address of the corresponding record in the

 Computer Architecture

© MSC EDUCATION HOLDINGS (PTY) LTD Page 138 of 167

indexed file. A dense index contains an entry for each record in

the main file. If the main file is organised sequentially, a dense

index is not necessary. A partial index containing the highest (or

the lowest) key value in each bucket is quite sufficient. The index

itself would be organised sequentially.

Ideally, one would like to be able to hold the index in main

memory. Then one can search the index quickly (perhaps using

binary search which is fast in main memory) to obtain the storage

address, and then retrieve the required record in a single disc

access. However, if the main file is very large, even a partial index

may be too large to be held in main memory. In this case one may

consider constructing a multi-level index, i.e. an index to the index

which may be small enough to be held in main memory.

The most common form of indexing is dynamic. This allows

changes to the index as records are added to or deleted from the

main file.

An index is usually constructed as a tree. The construction and use

of various tree indexes will be taken up later.

3.4.2.3 Types of computer system files

Transaction files. These files represent a group of transactional

data, such as sales transactions, waiting posting (updating) to the

master files affected by the transaction. Examples would be sales

transaction file, payroll transaction file, collections-on-account

transaction file, receiving transaction file.

 Computer Architecture

© MSC EDUCATION HOLDINGS (PTY) LTD Page 139 of 167

Open transaction files represent in-process transactions that do

not yet represent a completed accounting transaction. Examples

would be the open purchase order file, which represents

purchases on order but have not yet been received. When the

goods are received, additional data will be entered to reflect that

receipt, and the transactions in the open file will move to a

completed transaction file that will be posted to all master files

impacted by the transactions.

Master files. Represent on-going information pertaining to an

entity that is carried over from one period to the next. Examples

would be the accounts receivable master file, inventory master file,

and general ledger master file.

History files. Contain transactions that have been previously

posted to the master files affected by the transaction. After

transactions are posted, they are appended to history files, so that

the firm will have an "audit trail" record of all transactions

undertaken. These files are used to generate a number of reports

analysing past transactions, such as sales analysis reports.

3.4.2.4 Types of computerised processing

Data Entry The process of getting transactional or master file data

entered into files in the system. This could consist of keying the

data from a terminal, or scanning a bar code or other scanable

document. Many web-based businesses are using the customers

themselves to enter data pertaining to the sales.

 Computer Architecture

© MSC EDUCATION HOLDINGS (PTY) LTD Page 140 of 167

Editing The process of applying control procedures to data. At this

point of data entry and subsequently to data entry in an attempt to

identify data entry errors or other incorrect data.

Updating This process is the same as posting in a manual system,

which simply represents the updating of account balances and

other cumulative fields in master files to reflect transactional data.

Appending (merge)the process of adding posted transactions to

history files.

Deleting - the process of deleting transactions from transaction

files after they have been posted to the master files and appended

to the history files. This prepares the transaction file for the next

day of activity.

Sorting The process of ordering data in a file based on a specified

field or fields

 Sorting of transaction files was required in older sequential

access, magnetic tape supported systems, since the

transaction file had to be put in the same order as the master

file being updated.

 Sorting is now primarily used to arrange data in a desired

order for query or report generation.

Report generation The process of generating pre-defined or ad

hoc reports from files or combinations of files in the system. The

reports made commonly be displayed on the screen or output to a

printer.

 Computer Architecture

© MSC EDUCATION HOLDINGS (PTY) LTD Page 141 of 167

Maintenance Processing The processing of non-transactional

changes in master file (database) records that do not affect the

balance in an account. This processing encompasses adding new

records to a file, deleting records, making non-transactional

changes such as changing the address, marital status, pay rate,

etc. of an employee in the employee master file.

ACTIVITY 11 – REVIEWED – US14944 SO 2

Complete this activity in your Portfolio of Evidence

Workbooks.

3.5 DATABASE SYSTEMS

A database is a collection of related data. By data, we mean

known facts that can be recorded and that have implicit meaning.

For example, consider the names, telephone numbers, and

addresses of the people you know. You may have recorded this

data in an indexed address book, or you may have stored it on a

hard drive, using a personal computer and software such as

Microsoft Access, or Excel. This is a collection of related data with

an implicit meaning and hence is a database.

A database may be generated and maintained manually or it may

be computerised. For example, a library card catalogue is a

database that may be created and maintained manually. A

computerised database may be created and maintained either by a

group of application programs written specifically for that task or by

 Computer Architecture

© MSC EDUCATION HOLDINGS (PTY) LTD Page 142 of 167

a database management system. Of course, we are only

concerned with computerised databases in this course.

3.5.1 How databases are used

You now realize the use of databases for supporting the core

business of an organisation and enabling day-to-day operations.

These are production databases that support the operational

systems of an enterprise. More recently, with increasing demand

for information, databases fulfil another important function.

Databases provide support for strategic decision making in an

organisation. Such decision support databases are designed and

implemented separately and differently. Production databases and

decision-support databases are large-scale databases for the

several users within organisations.

Individuals and single departments may also use private

databases. For example, a specialty department may want to send

targeted mailings to specific customers and to keep these

customers in a separate database. Individual business analysts

may keep data and research results in a separate database just for

their use. These are mass deployment individual databases. The

figure below shows the separation of databases by their uses and

describes some of the features.

Figure: Use of databases

 Computer Architecture

© MSC EDUCATION HOLDINGS (PTY) LTD Page 143 of 167

3.5.2 Overview of data models

A data model represents the data requirements of an organisation.

You can diagrammatically show a data model with symbols and

figures. Data for an organisation resides in a database. Therefore,

when designing a database, you first create a data model. The

model would represent the real-world data requirements. It would

show the arrangement of the data structures. Database software

has evolved to support different types of data models. As we try to

represent real-world data requirements as close as possible in a

data model, we come up with a replica of the real-world information

requirements. It turns out that we can look at data requirements

and create data models in a few different ways. At this stage, let us

survey a few leading data models. Over time, different vendors

have developed commercial database management systems to

support each of these common data models.

 Computer Architecture

© MSC EDUCATION HOLDINGS (PTY) LTD Page 144 of 167

3.5.1.1 Flat file

A flat file database describes any of various means to encode a

database model (most commonly a table) as a singular file (such

as .txt or .ini).

A "flat file" is a plain text or mixed text and binary file which usually

contain one record per line or 'physical' record (example on disc or

tape). Within such a record, the single fields can be separated by

delimiters, e.g. commas, or have a fixed length. In the latter case,

padding may be needed to achieve this length. Extra formatting

may be needed to avoid delimiter collision. There are no structural

relationships between the records.

Typical examples of flat files are /etc/password and /etc/group on

Unix-like operating systems. Another example of a flat file is a

name-and-address list with the fields Name, Address, and Phone

Number.

It is possible to write out by hand, on a sheet of paper, a list of

names, addresses, and phone numbers; this is a flat file database.

This can also be done with any typewriter or word processor. Many

pieces of computer software are designed to implement flat file

databases.

 Computer Architecture

© MSC EDUCATION HOLDINGS (PTY) LTD Page 145 of 167

Figure: Flat file

3.5.1.2 Hierarchical model

Let us examine the data requirements for a typical manufacturing

company. Typically in manufacturing, you have major assemblies,

with each major assembly consisting of subassemblies, each

subassembly consisting of parts, each part consisting of subparts,

and so on. In your database for the manufacturing company, you

need to keep data for the assemblies, subassemblies, parts, and

subparts. And the data model for manufacturing operations must

represent these data requirements.

Think about this data model. This model should show that an

assembly contains subassemblies, a subassembly contains parts,

and a part contains subparts. Immediately you can observe that

this data model must be hierarchical in nature, diagramming the

assembly at the top with subassembly, part, and subpart at

successive lower levels.

In the business world, many data structures are hierarchical in

nature. You can notice a hierarchy in department, product

category, product subcategory, product line, and product. You can

 Computer Architecture

© MSC EDUCATION HOLDINGS (PTY) LTD Page 146 of 167

trace a hierarchy in division, subdivision, department, and

employee. The next figure illustrates one such model showing the

hierarchy of customer, order, and order line item. A customer may

have one or more orders, and an order may have one or more line

items, perhaps one line item for each product ordered.

Key features of the hierarchical model

Level: Each data structure representing a business object is at

one of the hierarchical levels.

Parent-Child Relationships: The relationship between each pair

of data structures at levels next to each other is a parent-child

relationship. CUSTOMER is a parent data segment whose child is

the ORDER data segment. In this arrangement, a child segment

can have only one parent segment but one parent segment may

have multiple child segments. You may want to separate orders

into phone orders and mail orders. In that case, CUSTOMER may

have PHONE ORDER and MAIL ORDER as two child segments.

Root Segment: The data segment at the top level of the hierarchy

is known as the root data segment (as in an inverted tree).

 Computer Architecture

© MSC EDUCATION HOLDINGS (PTY) LTD Page 147 of 167

Figure: Root Segment

3.5.1.3 Network model

The hierarchical data model represents well any business data that

inherently contains levels one below the other. We have just

discussed how the manufacturing application deals with

hierarchical levels of plant inventory with assemblies broken down

into lower-level components. The hierarchical data model suits this

application well. However, in the real world, most data structures

do not conform to a hierarchical arrangement. The levels of data

structures do not fall into nice dependencies one below another as

in a hierarchy. In the hierarchical data model, you have noticed

that each data segment at any level can have only one parent at

the next higher level. In practice, many sets of related elements

may not be subjected to such restrictions.

Let us consider a common set of related data elements in a typical

business. The data elements pertain to customers placing orders

and making payments, salespersons being assigned, and

 Computer Architecture

© MSC EDUCATION HOLDINGS (PTY) LTD Page 148 of 167

salespersons being part of sales territories. All of these data

elements cannot be arranged in a hierarchy. The relationships

cross over among the data elements as though they form a

network. Refer to the next figure and note how it represents a

network arrangement and not a hierarchical arrangement. Observe

the six data elements of sales territory, salesperson, customer,

order, order line item, and payment as nodes in a network

arrangement.

The network data model overcomes some of the limitations of the

hierarchical data model. The network data model is more

representative of real-world information requirements than the

hierarchical model. The network data model can represent most

business information.

Key features of the network model

Levels: As in most real-world situations, no hierarchical levels

exist in the network model. The lines in a network data model

simply connect the appropriate data structures wherever

necessary without the restriction of connecting only successive

levels as in the hierarchical model. Note the lines connecting the

various data structures with no restrictions.

Record Types: In the network data model, each data structure is

known as a record type. For example, the CUSTOMER record type

represents the data content of all customers. The ORDER record

type represents the data content of all orders.

 Computer Architecture

© MSC EDUCATION HOLDINGS (PTY) LTD Page 149 of 167

Relationships: The network data model expresses relationships

between two record types by designating one as the owner record

type and the other as the member record type. For each

occurrence of an owner record type, there are one or more

occurrences of the member record type. The owner record type

may be reckoned as the parent and the member record type as the

child. In a sense, the owner record type “owns” the corresponding

member record type. Each member type with its corresponding

owner record type is known as a set. A set represents the

relationship between an owner and a member record type.

Multiple Parents: Look at the ORDER member record type. For

ORDER there are two parents or owner records, namely,

CUSTOMER and PAYMENT. In other words, for one occurrence of

CUSTOMER, one or more occurrences of ORDER exist. Similarly,

for one occurrence of PAYMENT there are one or more

occurrences of ORDER. By definition, a hierarchical data model

cannot represent this kind of data arrangement with two parents for

one child data structure.

Physical Pointers: Just as in the case of the hierarchical data

model, related occurrences of two different record types in a

network model are connected by physical pointers or physical

storage addresses embedded within physical records in the

database. Physical pointers link occurrences of an owner record

type with the corresponding occurrences of the member record

type. Within each record type itself the individual occurrences may

be linked to one another by means of forward and backward

pointers.

 Computer Architecture

© MSC EDUCATION HOLDINGS (PTY) LTD Page 150 of 167

Figure: Physical Pointers

3.5.1.4 Relational model

This data model is superior to the earlier models. Dr. E. F. Codd,

the celebrated father of the relational model, stipulated the rules

and put this model on a solid mathematical foundation. At this

stage, however, we want to introduce the relational model as a

superior data model that addresses the limitations of the earlier

data models.

The earlier hierarchical data model is suitable for data structures

that are naturally hierarchical, with each data structure placed at a

certain level in the hierarchy.

However, in the business arena, many of the data structures and

their relationships cannot be readily placed in a hierarchical

arrangement. The network data model evolved to dispense with

the arbitrary restriction of the hierarchical model. Nevertheless, in

both of these models, you need physical pointers to connect

related data occurrences. This is a serious drawback because you

 Computer Architecture

© MSC EDUCATION HOLDINGS (PTY) LTD Page 151 of 167

have rewrite the physical addresses in the data records every time

you reorganise the data, move the data to a different storage area,

or change over to another storage medium. The relational model

establishes the connections between related data occurrences by

means of logical links implemented through foreign keys.

Key features of the relational data model

Levels: Just like the network data model, no hierarchical levels are

present in the relational model. The lines in a relational data model

simply indicate the relationships between the appropriate data

structures wherever necessary without the restriction of connecting

only successive levels as in the hierarchical model. As in the

network model, note the lines connecting the various data

structures with no restrictions.

Relations or Tables: The relational model consists of relations. A

relation is a two-dimensional table of data observing relational

rules. For example, the CUSTOMER relation represents the data

content of all customers. The ORDER relation represents the data

content of all orders.

Relationships: Consider the relationship between CUSTOMER

and ORDER. For each customer one or more orders may exist. So

this customer occurrence must be connected to all the related

order occurrences. In the relational model, physical pointers do not

establish these connections. Instead, a foreign key field is included

in the ORDER data structure. In each of the order occurrences

relating to a certain customer, the foreign key contains the

identification of that customer. When you look for all the orders for

 Computer Architecture

© MSC EDUCATION HOLDINGS (PTY) LTD Page 152 of 167

a particular customer, you search through the foreign key field of

ORDER and find those order occurrences with identification of that

customer in the foreign key field.

No Physical Pointers. Unlike the hierarchical or the network data

models, the relational model establishes relationships between

data structures by means of foreign keys and not by physical

pointers.

Figure: Data relationships

3.5.1.5 Object-oriented model

Object DBMSs add database functionality to object programming

languages. They bring much more than persistent storage of

programming language objects. A major benefit of object-oriented

model is the unification of the application and database

development into a seamless data model and language

environment. As a result, applications require less code, use more

natural data modelling, and code bases are easier to maintain.

 Computer Architecture

© MSC EDUCATION HOLDINGS (PTY) LTD Page 153 of 167

Object developers can write complete database applications with a

modest amount of additional effort.

The object-oriented database (OODB) paradigm combines object-

oriented programming language (OOPL) systems and persistent

systems. The power of the OODB comes from the seamless

treatment of both persistent data, as found in databases, and

transient data, as found in executing programs.

In contrast to a relational DBMS where a complex data structure

must be flattened out to fit into tables or joined together from those

tables to form the in-memory structure, object DBMSs have no

performance overhead to store or retrieve a web or hierarchy of

interrelated objects. This one-to-one mapping of object

programming language objects to database objects has two

benefits over other storage approaches: it provides higher

performance management of objects, and it enables better

management of the complex interrelationships between objects.

This makes object DBMSs better suited to support applications

such as financial portfolio risk analysis systems,

telecommunications service applications, World Wide Web

document structures, design and manufacturing systems, and

hospital patient record systems, which have complex relationships

between data.

3.5.1.6 Object-relational

Take the case of the State of Minerals which manages the mines

in the country. It maintains a library of more than half a million

pictures. Users access this library several times a day. A user

 Computer Architecture

© MSC EDUCATION HOLDINGS (PTY) LTD Page 154 of 167

requests a picture by content: “Show me Anglo Platinum Mine”.

Despite an index system of captions and keywords, retrieval of the

right picture within a reasonable time is virtually impossible with the

current relational database systems. Nor are purely object-oriented

data systems totally adequate to handle the challenge.

As the demand for information continues to grow, organizations

need database systems that allow representation of complex data

types, user-defined sophisticated functions, and user-defined

operators for data access.

Object-relational database management systems (ORDBMS)

present viable solutions for handling complex data types. The

object-relational model combines the ability of object technology to

handle advanced types of relationships with features of data

integrity, reliability, and recovery found in the relational realm.

 Computer Architecture

© MSC EDUCATION HOLDINGS (PTY) LTD Page 155 of 167

Figure: Object-relational

3.5.2 Types of databases

The corporate database that holds an organisation’s data is the

underlying foundation for corporate information. Organisations are

also faced with questions regarding how and where to hold the

corporate data. Where should an enterprise hold its data? Should

all the corporate data be kept centrally in one place? If so, what

are the advantages and disadvantages? Or should the corporate

data be divided into suitable fragments and the pieces kept at

different locations? What are the implications of this arrangement?

Organisations primarily adopt one of two approaches. If the entire

database is kept in one centralized location, this type of database

is a centralised database. On the other hand, if fragments of the

database are physically placed at various locations, this type of

database is a distributed database. Each type has its own benefits

and shortcomings. Again, whether an enterprise adopts a

 Computer Architecture

© MSC EDUCATION HOLDINGS (PTY) LTD Page 156 of 167

centralised or a distributed approach depends on the

organisational setup and the information requirements.

3.5.2.1 Centralised

Personalised databases are always centralised in one location. If

your company has a centralised computer system, then the

database must reside in that central location. In the client/server

architecture, the database resides on a server machine. The entire

database may be kept on a single server machine and placed in a

central location.

Figure: Centralized database

When all corporate data is in one place in a centralised database,

companies find it easier to manage and administer the database.

You can control concurrent accesses to the same data in the

database easily in a centralised database. You can maintain

security controls easily. However, if your company’s operations are

spread across remote locations, these locations must access the

centralised database through communication links. Here, data

 Computer Architecture

© MSC EDUCATION HOLDINGS (PTY) LTD Page 157 of 167

availability depends on the capacity and dependability of the

communication links.

3.5.2.2 Distributed

Shows how fragments of a corporate database are spread across

remote locations. Global organisations or enterprises with

widespread domestic operations can benefit from distributed

databases. In such organisations computer processing is also

distributed, with processing done locally at each location. A

distributed database gets fragmented into smaller data sets.

Normally, you would divide the database into data sets on the

basis of usage. If a fragment contains data that are most relevant

to one location, then that data set is kept at that location. At each

location, a fragment of the enterprise data is placed based on the

usage.

Each fragment of data at every location may be managed with the

same type of database management system. For example, you

may run Oracle DBMS at every location. In that case, you run your

distributed database as a homogenous database. On the other

hand, if you elect to manage the data fragments at different

locations with different DBMSs, then you run your distributed

database as a collection of heterogeneous database systems.

Heterogeneous arrangement provides extra flexibility. However,

heterogeneous distribution is difficult to coordinate and administer.

Figure: Distributed database

 Computer Architecture

© MSC EDUCATION HOLDINGS (PTY) LTD Page 158 of 167

3.5.3 SQL

SQL is an industry standard database language that includes

statements for database definition, database manipulation, and

database control. SQL is based on a mathematical theory. This

theory, which consists of a set of concepts and definitions, is called

the relational model. The relational model was defined by E. F.

Codd in 1970, when he was employed by IBM.

This relational model provides a theoretical basis for database

languages. It consists of a small number of simple concepts for

recording data in a database, together with a number of operators

to manipulate the data. These concepts and operators are

principally borrowed from set theory and predicate logic.

SQL is a relational database language. Among other things, the

language consists of statements to insert, update, delete, query,

 Computer Architecture

© MSC EDUCATION HOLDINGS (PTY) LTD Page 159 of 167

and protect data. The following is a list of statements that can be

formulated with SQL:

 Insert the address of a new employee.

 Delete all the stock data for product ABC.

 Show the address of employee Johnson.

 Show the sales figures of shoes for every region and for

every month.

 Show how many products have been sold in London the last

three months.

 Make sure that Mr. Johnson cannot see the salary data any

longer.

SQL has already been implemented by many vendors as the

database language for their database server. For example, IBM,

MySQL, and Oracle are all vendors of SQL products.

We call SQL a relational database language because it is

associated with data that has been defined according to the rules

of the relational model.

Examples of SQL statements

As you already know by now, SQL is the language used to

communicate with database systems. To execute commands on a

database, you will compose SQL statements and send to a

database or database server. The database system will parse the

SQL statement and execute.

 Computer Architecture

© MSC EDUCATION HOLDINGS (PTY) LTD Page 160 of 167

What is an SQL statement?

An SQL statement represents a set of commands that can be

executed by a database system. Here is a sample SQL statement:

 select name from employee where age > 20

The above SQL statement will find the name of all employees from

the EMPLOYEE table who’s Age is above 20. The words marked

in blue colour are keywords. Let us break the statement into 3

sections:

 select name - SELECT is a keyword and NAME represents

the database field to select.

 from employee - FROM is a keyword and EMPLOYEE

represents the database table to select data from.

 where age > 20 - WHERE a keyword and AGE > 20 is the

 condition based on which the records are selected from

the table.

Basically, the select statement has the following syntax:

SELECT [FIELD 1, FIELD 2, ...] FROM [TABLE NAME] WHERE

[CONDITION]

The WHERE condition is optional. If there is no WHERE condition,

then the SQL statement will return all the records from the table.

3.5.4 Benefits of databases

Minimal Data Redundancy: Unlike file-oriented data systems

where data are duplicated among various applications, database

systems integrate all the data into one logical structure. Duplication

 Computer Architecture

© MSC EDUCATION HOLDINGS (PTY) LTD Page 161 of 167

of data is minimized. Wastage of storage space is eliminated.

Going back to the bank example, with a database, customer data

is not duplicated in the checking account, savings account, and

loan account applications. Customer data is entered and

maintained in only one place in the database.

Sometimes, in a database, a few data elements may have to be

duplicated. Let us say that product data consist of product number,

description, price, and the corresponding product line number. All

the fields relating to product line data are kept separately.

Whenever the details of products and product lines are needed in

applications, both data structures are retrieved from the database.

Suppose a heavily used product forecast application needs all the

details of the product from product data and just the product line

description from the product line data. In that case, it will be

efficient for the product data to duplicate the product line

description from the product line data. Thus, in some instances,

data duplication is permitted in a database for the purpose of

access efficiency and performance improvement. However, such

data duplications are kept to a minimum.

Data Integrity: Data integrity in a database means reduction of

data inconsistency. Because of the elimination or control of data

redundancy, a database is less prone to errors creeping in through

data duplication. Field sizes and field formats are the same for all

applications. Each application uses the same data from one place

in the database. In a bank, names and addresses will be the same

for checking account, savings account, and loan applications.

 Computer Architecture

© MSC EDUCATION HOLDINGS (PTY) LTD Page 162 of 167

Data Integration: In a database, data objects are organised into

single logical data structures. For example, in file-oriented data

systems, data about employees are scattered among the various

applications. The payroll application contains employee name and

address, social security number, salary rate, deductions, and so

on. The pension plan application contains pension data about each

employee, whereas the human resources application contains

employee qualifications, skills, training, and education. However,

all data about each employee are integrated and stored together in

a database.

So, in a database, data about each business object are integrated

and stored separately as customer, order, product, invoice,

manufacture, sale, and so on. Data integration enables users to

understand the data and the relationships among data structures

easily. Programmers needing data about a business object can go

to one place to get the details. For example, data about orders are

consolidated in one place as order data.

Data Sharing: This benefit of database systems follows from data

integration. The various departments in any enterprise need to

share the company’s data for proper functioning. The sales

department needs to share the data generated by the accounting

department through the billing application. Consider the customer

service department. It needs to share the data generated by

several applications. The customer service application needs

information about customers, their orders, billings, payments, and

credit ratings. With data integration in a database, the application

 Computer Architecture

© MSC EDUCATION HOLDINGS (PTY) LTD Page 163 of 167

can get data from distinct and consolidated data structures relating

to customer, orders, invoices, payments, and credit status.

Data sharing is a major benefit of database systems. Each

department shares the data in the database that are most pertinent

to it. Departments may be interested in data structures as follows:

Sales department: Customer/Order

Accounting department: Customer/Order/Invoice/Payment

Order processing department: Customer/Product/Order

Inventory control department: Product/Order/Stock

Quantity/Back Order Quantity

Database technology lets each application use the portion of the

database that is needed for that application. User views of the

database are defined and controlled. We will have more to say

about user views in later chapters.

Uniform Standards: We have seen that, because of the spread of

duplicate data across applications in file-oriented data systems,

standards cannot be enforced easily and completely. Database

systems remove this difficulty. As data duplication is controlled in

database systems and as data is consolidated and integrated,

standards can be implemented more easily. Restrictions and

business rules for a single data element need to be applied in only

one place. In database systems, it is possible to eliminate

problems from homonyms and synonyms.

Security Controls: Information is a corporate asset and,

therefore, must be protected through proper security controls. In

 Computer Architecture

© MSC EDUCATION HOLDINGS (PTY) LTD Page 164 of 167

file-oriented systems, security controls cannot be established

easily. Imagine the data administrator wanting to restrict and

control the use of data relating to employees. In file-oriented

systems, control has to be exercised in all applications having

separate employee files. However, in a database system, all data

about employees are consolidated, integrated, and kept in one

place. Security controls on employee data need to be applied in

only one place in the database. Database systems make

centralised security controls possible. It is also easy to apply data

access authorizations at various levels of data.

Data Independence: Remember the lack of data independence in

file-oriented systems where computer programs have data

structure definitions embedded within the programs themselves. In

database systems, file or data definitions are separated out of the

programs and kept within the database itself. Program logic and

data structure definitions are not intricately bound together. In a

client/server environment, data and descriptions of data structures

reside on the database server, whereas the code for application

logic executes on the client machine or on a separate application

server.

Reduced Program Maintenance: This benefit results primarily

from data independence in applications. If the customer data

structure changes by the addition of a field for cellular phone

numbers, then this change is made in only one place within the

database itself. Only those programs that need the new field need

to be modified and recompiled to make use of the added piece of

 Computer Architecture

© MSC EDUCATION HOLDINGS (PTY) LTD Page 165 of 167

data. Within limits, you can change programs or data

independently.

Simpler Backup and Recovery: In a database system, generally

all data are in one place. Therefore, it becomes easy to establish

procedures to back up data. All the relationships among the data

structures are also in one place. The arrangement of data in

database systems makes it easier not only for backing up the data

but also for initiating procedures for recovery of data lost because

of malfunctions.

ACTIVITY 12 – REVIEWED - US14944 SO 2

Complete this activity in your Portfolio of Evidence

Workbooks.

 Computer Architecture

© MSC EDUCATION HOLDINGS (PTY) LTD Page 166 of 167

REFERENCE

 Computer hardware and software. by Angela Du Preez, Vaughan Van

Dyk, Adrian Cook

 Bernard A. Megrey and Erlend Moksness. Past, Present and Future

Trends in the Use of Computers in Fisheries Research. 2009.

http://www.pmel.noaa.gov/foci/publications/2009/megr0679.pdf

 http://www.ready.gov/america/_downloads/computerinventory.pdf.

 Data Structures Demystified by Jim Keogh and Ken Davidson, 2004

 Databases Demystified by Andy Oppel 2004

 Character set encoding basics -

 http://scripts.sil.org/cms/scripts/page.php?site_id=nrsi&item_id=IWS-

Chapter03

 A tutorial on character code issues

http://www.cs.tut.fi/~jkorpela/chars.html

 Unicode Chart. http://www.ssec.wisc.edu/~tomw/java/unicode.html

 www.wikipedia.org and Wiki answers.

 Wikipedia.org

 Computer hardware and networks By Angela Du Preez, Vaughan Van

Dyk, Adrian Cook (Unit1, Unit3)

 http://wapedia.mobi/en/Kernel_%28computers%29

http://www.pmel.noaa.gov/foci/publications/2009/megr0679.pdf
http://www.ready.gov/america/_downloads/computerinventory.pdf
http://scripts.sil.org/cms/scripts/page.php?site_id=nrsi&item_id=IWS-Chapter03
http://scripts.sil.org/cms/scripts/page.php?site_id=nrsi&item_id=IWS-Chapter03
http://www.cs.tut.fi/~jkorpela/chars.html
http://www.ssec.wisc.edu/~tomw/java/unicode.html

 Computer Architecture

© MSC EDUCATION HOLDINGS (PTY) LTD Page 167 of 167

Developed for

MSC EDUCATION HOLDINGS (PTY) LTD

26 Bonza Bay Road,

Beacon Bay,

East London

Phone: (043) 7485778

Fax: (043) 7483610

E-mail: mscho@msccollege.co.za

